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6. Efficient Algorithm

• In the paper we give an algorithm to compute the probabilityPsw(xn), which has running time
that is linear in both the sample size and the number of models.

• The algorithm is similar to the FIXED-SHARE algorithm for tracking the best expert, see M.
Herbster and M. K. Warmuth.Tracking the best expert.Machine Learning, 32:151–178, 1998

5. Theorems

Let X∞ = X1, X2, . . . be a sequence of random variables, and letXb
a := Xa, Xa+1, . . ., Xb.

Suppose thatP1, P2, . . . are the Bayesian marginal distributions corresponding to parametric
modelsM1, M2, . . . with respective parameter spacesΘ1, Θ2, . . . and priorsw1, w2, . . . Finally,
suppose thatPsw is the switch-distribution for these models with priorπ.

Theorem 1 (Consistency of the Switch-Distribution). Supposeπ is as in (2). Suppose also that
for everyk, k′, k 6= k′ and anyn initial outcomesxn, the conditional distributionsPk(X∞

n+1 | xn)

andPk′(X∞
n+1 | xn) are mutually singular. Then, for allk∗ ∈ Z

+, for all θ∗ ∈ Θk∗ except for a
subset ofΘk∗ of wk∗-measure0, the posterior distribution on models satisfies

π(k∗ | Xn
1 )

n→∞
−→ 1 with Pθ∗-probability1. (3)

• ForM =
⋃

k≥1Mk, define theinformation closureas〈M〉 = {P ∗ | infP∈MD(P ∗‖P ) = 0},
the set of distributions forX∞ that can be arbitrarily well approximated by elements ofM.

• Therisk at sample sizen ≥ 1 of an estimatorP relative toP ∗ is defined as

Rn(P ∗, P ) = EXn−1∼P ∗[D(P ∗(Xn = · | Xn−1)‖P (Xn = · | Xn−1))],

• For eachk, let Pk be an estimator associated with modelMk (e.g. ML estimator or Bayes
predictive distribution). ForM∗ ⊂ 〈M〉, let h(n) be theminimax convergence rate:

h(n) = inf
δ:X n→{1,2,...,n}

sup
P ∗∈M∗

sup
n′>n

Rn′(P ∗, Pδ). (4)

Theorem 2 (Optimal Rates of Convergence of the Switch-Distribution). Supposeπ is as in
(2). LetM∗ be any subset of〈M〉 with minimax rateh such thatnh(n) is increasing, and
nh(n)/(log n)2 → ∞. Then

lim sup
n→∞

supP ∗∈M∗

∑n
i=1 Ri(P

∗, Psw)∑n
i=1 h(i)

≤ 1. (5)

4. Solution: The Switch-Distribution

A Single Switching Sequence

• By viewing marginal distributions as sequential prediction strategies,it becomes possible to
switch between them.

• For example, given an infinite number of modelsM1, M2, . . . with respective marginal dis-
tributionsP1, P2, . . ., Figure 1 illustrates switching fromP2 to P3, P5, P2 again, and finally to
P8.

Figure 1: Switching between models

Then the distribution onx14 is: P (x14) = P2(x
2)P3(x

5|x2)P5(x
7|x5)P2(x

10|x7)P8(x
14|x10)

The Switch-Distribution

• The switch-distributionPsw is defined by putting a prior distribution,π, on all possible switch-
ing sequences.

• In the Example, we see that it closely follows the best-predicting model at all sample sizes.
E.g. we may take

π(switch at sample sizest1, . . . , tm toMk1
, . . . ,Mkm

) ∝ 2−m
m∏
i=1

k−2
i t−2

i (2)

3. The Catch-up Phenomenon Makes Bayes Suboptimal

The Marginal Distribution is a Sequential Prediction Strategy

• By the chain rule, any (Bayesian) marginal distribution onxn may be written as the product of
sequential predictions of the next character given all previous characters:

P (xn) =

n∏
i=1

P (xi | xi−1) (1)

• Taking the negative logarithm of this expression shows that thelog loss onxn may be viewed
as the accumulated log loss that is incurred in sequentially predicting the characters one by
one.

Suboptimality of Bayesian Model Averaging

• Hence, the fact that Markov 2 is catching up with Markov 1 in theshaded region of the Example
figure, means that Markov 2 is making better predictions than Markov 1.

• We see, however, that the Bayesian loss follows that of Markov1, which has smallestaccumu-
lated log loss: In the shaded region, the Bayesian predictions follow the wrong model!

Theoretical Example: Histogram Density Estimation, Regression

• The catch-up phenomenon occurs because different models arebest at different sample sizes.

• This also causes Bayes to achieve a suboptimal rate of convergence when selecting the number
bins in histogram density estimation and regression (with e.g., polynomials). (It wastes an
O(log n) factor.)

2. The Catch-up Phenomenon
Example: Log loss on the firstn characters in “The Picture of Dorian Gray” as a function ofn

L(Markov 2) − L(Markov 1)  
L(Bayes) − L(Markov 1)  

L(Switch) − L(Markov 1)
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• L(Markov 1) and L(Markov 2): Log loss (in bits) onxn = x1, . . . , xn of the Bayesian marginal
distribution for the first-order and second-order Markov chains with uniform prior wj(θ) ≡ 1:

L(Markov j) = − log Pj(x
n) ; Pj(x

n) =

∫
Pθ(x

n)wj(θ) dθ

• L(Bayes): Log loss of Bayesian model averaging over first- and second-order Markov chains

• The catch-up phenomenon: After100 000 characters, Markov 2 is40 000 bits behind on Markov 1,
and210 000 characters further into the novel Markov 2 manages to catch up.

1. Introduction & Summary
• AIC-BIC Dilemma: Bayes factor model averaging, model selection and their approximations

such as BIC are generally statistically consistent, but sometimesachieve slower rates of con-
vergence than other methods such as AIC and leave-one-out cross-validation.On the other
hand, these other methods can be inconsistent.

Fast
Consistent convergence

BIC, Bayes, MDL ✓ ✗
AIC, LOO cross-validation ✗ ✓
New method: Switch-Distribution ✓ ✓

• Catch-Up Phenomenon:our novel explanation for the slow convergence of Bayesian methods.

• Switch Distribution:A modification of the Bayesian marginal distribution, suggested by anal-
ysis of the catch-up phenomenon.

• Theoretical Optimality Results:We prove that model selection and prediction based on the
switch-distribution is typically both consistent and achieves optimal convergence rates, thereby
resolving the AIC-BIC dilemma.

• Practical Use:The method is practical; we give an efficient implementation.
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