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1. Introduction & Summary

e AIC-BIC Dilemma: Bayes factor model averaging, model selection and their approximations
such as BIC are generally statistically consistent, but sometani@gve slower rates of con-
vergence than other methods such as AIC and leave-one-out cross-validanoime other

hand, these other methods can be inconsistent.
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e Catch-Up Phenomenonur novel explanation for the slow convergence of Bayesian methods.
e Switch Distribution:A modification of the Bayesian marginal distribution, suggested by anal-
ysis of the catch-up phenomenon.

e Theoretical Optimality ResultsWe prove that model selection and prediction based on the
switch-distribution is typically both consistent and achieves optimal@g®nce rates, thereby
resolving the AIC-BIC dilemma.

e Practical UseThe method is practical; we give an efficient implementation.

4. Solution: The Switch-Distribution

A Single Switching Sequence

e By viewing marginal distributions as sequential prediction strategidseecomes possible to
switch between them.

e For example, given an infinite number of modgdls;, Mo, ... with respective marginal dis-
tributions Py, P, ..., Figure 1 illustrates switching from, to P3, P, P» again, and finally to

.
Figure 1. Switching between models
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Then the distribution on'* is: P(z!%) = Py(22) Py(2°|2?) Ps (2 |2°) Py(210)2 ") Py (2142 19)

The Switch-Distribution

e The switch-distributionPsy Is defined by putting a prior distributiorr, on all possible switch-
INg sequences.

e In the Example, we see that it closely follows the best-predicting mddal aample sizes.
E.g. we may take

m
m(switch at sample sizes, ...t O My, ... My ) o 27 [kt (2)
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2. The Catch-up Phenomenon

Example: Log loss on the first characters in “The Picture of Dorian Gray” as a functiomof
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e L(Markov 1) and L(Markov 2): Log loss (in bits) art* = x4, ..., x,, of the Bayesian marginal
distribution for the first-order and second-order Markov chains with umifprior w;(6) = 1:

L(Markov j) = —log P;(z") ; Pj(z") = /Pg(l‘n)w]‘<9> df

e L(Bayes): Log loss of Bayesian model averaging over first- and second{dat&ov chains

e The catch-up phenomenon: Aftg0 000 characters, Markov 2 i) 000 bits behind on Markov 1,
and210 000 characters further into the novel Markov 2 manages to catch up.

5. Theorems
Let X°° = Xy, Xo, ... be a sequence of random variables, andXIét:: Xa, Xgaty - Xp
Suppose thaf;, P, ... are the Bayesian marginal distributions corresponding to parametric

modelsM, Mo, ... with respective parameter spaces O-, ... and priorswy, wo, ... Finally,

suppose thaPsy Is the switch-distribution for these models with prier

Theorem 1 (Consistency of the Switch-DistributiorSupposer is as in (2). Suppose also that
for everyk, k', k # k" and anyn initial outcomes:”, the conditional distribution®,.(X > | | z")
and P, (X2, | ™) are mutually singular. Then, for alt* ¢ Z™, for all 8* ¢ ©,.. except for a

n+1
subset oB,.. of wi.«-measurd), the posterior distribution on models satisfies

r(k* | X)) "=5"1  with Py.-probability 1. (3)
o For M = | J;> My, define thenformation closuras(M) = { P* | inf pc pg D(P*[| P) = 0},

the set of distributions foX °° that can be arbitrarily well approximated by elements\af
e Therisk at sample size > 1 of an estimatol” relative toP* is defined as

Rn(P*, P) = Exn1 p [ D(P*(Xp = - | X" P(Xp = - [ X"71),

e For eachk, let P,. be an estimator associated with moadeél,. (e.g. ML estimator or Bayes
predictive distribution). FoM™ C (M), let h(n) be theminimax convergence rate
. S
M sy e ) “
Theorem 2 (Optimal Rates of Convergence of the Switch-Distributid@@)pposer is as In
(2). Let M* be any subset ofM) with minimax rateh such thatnh(n) is increasing, and
nh(n)/(logn)?> — co. Then

lim sup Sprem 2iiz1 Fil P, Pow) < 1. (5)

n—00 i1 h(9) B
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3. The Catch-up Phenomenon Makes Bayes Suboptimal

The Marginal Distribution is a Sequential Prediction Strpt

e By the chain rule, any (Bayesian) marginal distributiommdmay be written as the product of
sequential predictions of the next character given all previcharacters:

n

P(") =[Pl |2 (1)

1=1

e Taking the negative logarithm of this expression shows thakifpéoss onz” may be viewed
as the accumulated log loss that is incurred in sequentiadigigting the characters one by

one.
Suboptimality of Bayesian Model Averaging

e Hence, the fact that Markov 2 is catching up with Markov 1 inghaded region of the Example
figure, means that Markov 2 is making better predictions thankigl 1.

e \We see, however, that the Bayesian loss follows that of Matkavhich has smallestccumu-
latedlog loss: In the shaded region, the Bayesian predictionsviolhe wrong model!

Theoretical Example: Histogram Density Estimation, Regi@n

e The catch-up phenomenon occurs because different moddigsirat different sample sizes.

e This also causes Bayes to achieve a suboptimal rate of gpves when selecting the number
bins in histogram density estimation and regression (with, @glynomials). (It wastes an

O(logn) factor.)

6. Efficient Algorithm

e In the paper we give an algorithm to compute the probabify( "), which has running time
that is linear in both the sample size and the number of models.

e The algorithm is similar to the IKED-SHARE algorithm for tracking the best expert, see M.
Herbster and M. K. Warmuthlracking the best experdachine Learning, 32:151-17/8, 1998
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