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Summary

• Stochastic mixability           fast rates of convergence in 
different settings: 

• statistical learning (margin condition)

• sequential prediction (mixability)



Outline

• Part 1: Statistical learning

• Stochastic mixability (definition)

• Equivalence to margin condition

• Part 2: Sequential prediction

• Part 3: Convexity interpretation for stochastic mixability

• Part 4: Grünwald’s idea for adaptation to the margin



Notation



• Data: 

• Predict     from    : 

• Loss:

Notation

` : Y ⇥A ! [0,1]

(X1, Y1), . . . , (Xn, Yn)

F = {f : X ! A}Y X



Classification

• Data: 

• Predict     from    : 

• Loss:

Notation

` : Y ⇥A ! [0,1]

(X1, Y1), . . . , (Xn, Yn)

F = {f : X ! A}

Y = {0, 1},A = {0, 1}

`(y, a) =

(
0 if y = a

1 if y 6= a

Y X



Density estimationClassification

• Data: 

• Predict     from    : 

• Loss:

Notation

` : Y ⇥A ! [0,1]

(X1, Y1), . . . , (Xn, Yn)

F = {f : X ! A}

Y = {0, 1},A = {0, 1}

`(y, a) =

(
0 if y = a

1 if y 6= a

A = density functions on Y

`(y, p) = � log p(y)

Y X



Density estimationClassification

• Data: 

• Predict     from    : 

• Loss:

Notation

` : Y ⇥A ! [0,1]

(X1, Y1), . . . , (Xn, Yn)

F = {f : X ! A}

Y = {0, 1},A = {0, 1}

`(y, a) =

(
0 if y = a

1 if y 6= a

A = density functions on Y

`(y, p) = � log p(y)

Y X

Without X : F ⇢ A



Statistical Learning



Statistical Learning

(X1, Y1), . . . , (Xn, Yn)
iid⇠ P ⇤

f⇤ = argmin
f2F

E[`(Y, f(X))]

d(f̂ , f⇤) = E[`(Y, f̂(X))� `(Y, f⇤(X))]



Statistical Learning
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f2F

E[`(Y, f(X))]
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Statistical Learning

(X1, Y1), . . . , (Xn, Yn)
iid⇠ P ⇤

f⇤ = argmin
f2F

E[`(Y, f(X))]

d(f̂ , f⇤) = E[`(Y, f̂(X))� `(Y, f⇤(X))] = O(n�?)



• Two factors that determine rate of convergence:                                                       
1. complexity of                     2. the margin condition

Statistical Learning

(X1, Y1), . . . , (Xn, Yn)
iid⇠ P ⇤

f⇤ = argmin
f2F

E[`(Y, f(X))]

F

d(f̂ , f⇤) = E[`(Y, f̂(X))� `(Y, f⇤(X))] = O(n�?)



Definition of Stochastic Mixability

• Let           . Then                  is   -stochastically mixable if 
there exists an              such that

• Stochastically mixable: this holds for some

f⇤ 2 F
⌘ � 0 (`,F , P ⇤) ⌘

E


e�⌘`(Y,f(X))

e�⌘`(Y,f⇤(X))

�
 1 for all f 2 F .

⌘ > 0



Immediate Consequences

•     minimizes risk over     : 

• The larger   , the stronger the property of being   -
stochastically mixable

Ff⇤ f⇤ = argmin
f2F

E[`(Y, f(X))]

E


e�⌘`(Y,f(X))

e�⌘`(Y,f⇤(X))

�
 1 for all f 2 F

⌘ ⌘



• Log-loss:                                   ,

• Suppose                is the true density

• Then for           and any              :

Density estimation example 1

`(y, p) = � log p(y)

⌘ = 1

F = {p✓ | ✓ 2 ⇥}

p✓⇤ 2 F

p✓ 2 F

E


e�⌘`(Y,p✓)

e�⌘`(Y,p✓⇤ )

�
=

Z
p✓(y)

p✓⇤(y)
P ⇤(dy) = 1



Density estimation example 2



Density estimation example 2

• Normal location family with fixed variance      : 

•   -stochastically mixable for                    : 

�2

F = {N (µ,�2) | µ 2 R}

⌘

P ⇤ = N (µ⇤, ⌧2)

⌘ = �2/⌧2

E


e�⌘`(Y,pµ)

e�⌘`(Y,pµ⇤ )

�
= 1p

2⇡⌧2

Z
e�

⌘

2�2 (y�µ)2+ ⌘

2�2 (y�µ⇤)2� 1
2⌧2 (y�µ⇤)2dy

= 1p
2⇡⌧2

Z
e�

1
2⌧2 (y�µ)2dy = 1



Density estimation example 2

• Normal location family with fixed variance      : 

•   -stochastically mixable for                    : 

�2

F = {N (µ,�2) | µ 2 R}

⌘

P ⇤ = N (µ⇤, ⌧2)

⌘ = �2/⌧2

E


e�⌘`(Y,pµ)

e�⌘`(Y,pµ⇤ )

�
= 1p

2⇡⌧2

Z
e�

⌘

2�2 (y�µ)2+ ⌘

2�2 (y�µ⇤)2� 1
2⌧2 (y�µ⇤)2dy

= 1p
2⇡⌧2

Z
e�

1
2⌧2 (y�µ)2dy = 1

• If    is empirical mean: E[d(f̂ , f⇤)] =
⌧2

2�2n
=

⌘�1

2n
f̂
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Margin condition

• where 

• For 0/1-loss implies rate of convergence

• So smaller    is better 

d(f, f⇤) = E[`(Y, f(X))� `(Y, f⇤(X))]

V (f, f⇤) = E
�
`(Y, f(X))� `(Y, f⇤(X))

�2

c0V (f, f⇤
)

  d(f, f⇤
) for all f 2 F

O(n�/(2�1))



 � 1, c0 > 0

[Tsybakov, 2004]



Stochastic mixability      margin

• Thm [        ]: Suppose   takes values in        . Then               is 
stochastically mixable if and only if there exists           such 
that the margin condition is satisfied with         .

c0 > 0

 = 1

` [0, V ] (`,F , P ⇤)

c0V (f, f⇤
)

  d(f, f⇤
) for all f 2 F

 = 1



Margin condition with

• Thm [all          ]: Suppose   takes values in         . Then the 
margin condition is satisfied if and only if there exists a 
constant            such that, for all          ,                   is   -
stochastically mixable for                         .

 > 1

F✏ = {f⇤} [ {f 2 F | d(f, f⇤) � ✏}

 � 1 ` [0, V ]

C > 0 ✏ > 0 (`,F✏, P
⇤) ⌘

⌘ = C✏(�1)/
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Sequential Prediction with Expert Advice

• For rounds                         :

• K experts predict 

• Predict               by choosing 

• Observe 

• Regret = 

• Game-theoretic (minimax) analysis: want to guarantee small regret 
against adversarial data

t = 1, . . . , n

(xt, yt)

(xt, yt)

f̂t

f̂1
t , . . . , f̂

K
t

1

n

nX

t=1

`(yt, f̂t(xt))�min
k

1

n

nX

t=1

`(yt, f̂
k
t (xt))



Sequential Prediction with Expert Advice

• For rounds                       :

• K experts predict 

• Predict               by choosing 

• Observe 

• Regret = 

• Worst-case regret =                iff the loss is mixable!   [Vovk, 1995]

t = 1, . . . , n

(xt, yt)

(xt, yt)

f̂t

f̂1
t , . . . , f̂

K
t

1

n

nX

t=1

`(yt, f̂t(xt))�min
k

1

n

nX

t=1

`(yt, f̂
k
t (xt))

O(1/n)



Mixability

• A loss                                  is   -mixable if for any 
distribution    on     there exists an action              such that    

• Vovk: fast              rates if and only if loss is mixable

` : Y ⇥A ! [0,1] ⌘
⇡ A a⇡ 2 A

EA⇠⇡


e�⌘`(y,A)

e�⌘`(y,a⇡)

�
 1 for all y.

O(1/n)



(Stochastic) Mixability

• A loss                                  is   -mixable if for any 
distribution    on     there exists an action              such that

•                  is    -stochastically mixable if

` : Y ⇥A ! [0,1] ⌘
⇡ A a⇡ 2 A

EA⇠⇡


e�⌘`(y,A)

e�⌘`(y,a⇡)

�
 1 for all y.

⌘(`,F , P ⇤)

EX,Y⇠P⇤


e�⌘`(Y,f(X))

e�⌘`(Y,f⇤(X))

�
 1 for all f 2 F .





(Stochastic) Mixability

• A loss                                  is   -mixable if for any 
distribution    on     there exists an action              such that

` : Y ⇥A ! [0,1] ⌘
⇡ A a⇡ 2 A

`(y, a⇡)  �1

⌘
ln

Z
e�⌘`(y,a)⇡(da) for all y.



• Thm:                  is   -stochastically mixable iff for any 
distribution    on     there exists             such that

(Stochastic) Mixability

• A loss                                  is   -mixable if for any 
distribution    on     there exists an action              such that

` : Y ⇥A ! [0,1] ⌘
⇡ A a⇡ 2 A

⌘(`,F , P ⇤)

`(y, a⇡)  �1

⌘
ln

Z
e�⌘`(y,a)⇡(da) for all y.

⇡ F f⇤ 2 F

E[`(Y, f⇤(X))]  E[�1

⌘
ln

Z
e�⌘`(Y,f(X))⇡(df)]



Equivalence of Stochastic 
Mixability and Ordinary Mixability



Equivalence of Stochastic 
Mixability and Ordinary Mixability

• Thm: Suppose    is a proper loss and     is discrete. Then    
is   -mixable if and only if                      is   -stochastically 
mixable for all   .

Ffull = {all functions from X to A}

X` `
⌘ (`,Ffull, P

⇤) ⌘
P ⇤



Equivalence of Stochastic 
Mixability and Ordinary Mixability

• Thm: Suppose    is a proper loss and     is discrete. Then    
is   -mixable if and only if                      is   -stochastically 
mixable for all   .

Ffull = {all functions from X to A}

• Proper losses are e.g. 0/1-loss, log-loss, squared loss 

• Thm generalizes to other losses that satisfy two technical 
conditions

X` `
⌘ (`,Ffull, P

⇤) ⌘
P ⇤



Summary
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different settings: 

• statistical learning (margin condition)

• sequential prediction (mixability)
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• Log-loss:                                   ,

• Suppose                is the true density

• Then for           and any              :

Density estimation example 1

`(y, p) = � log p(y)

⌘ = 1

F = {p✓ | ✓ 2 ⇥}

p✓⇤ 2 F

p✓ 2 F

E


e�⌘`(Y,p✓)

e�⌘`(Y,p✓⇤ )

�
=

Z
p✓(y)

p✓⇤(y)
P ⇤(dy) = 1



Log-loss example 3 (convex    )

• Log-loss:                                   ,

• Suppose model misspecified:                                                  
is not the true density

• Thm [Li, 1999]: Suppose     is convex. Then  F

• Convexity is common condition for convergence of 
minimum description length and Bayesian methods

F

`(y, p) = � log p(y) F = {p✓ | ✓ 2 ⇥}

p✓⇤
= argmin

p✓2F
E[� log p✓(Y )]

Z
p✓(y)

p✓⇤
(y)

P ⇤
(dy)  1 for all p✓ 2 F



Log-loss and convexity for ⌘ = 1



• Thm:                  is   -stochastically mixable iff for any 
distribution    on     there exists             such that

Log-loss and convexity for ⌘ = 1

⌘(`,F , P ⇤)
⇡ F f⇤ 2 F

E[`(Y, f⇤(X))]  E[�1

⌘
ln

Z
e�⌘`(Y,f(X))⇡(df)]



• Thm:                  is   -stochastically mixable iff for any 
distribution    on     there exists             such that

Log-loss and convexity for 

• Corollary: For log-loss, 1-stochastic mixability means

where              denotes the convex hull of     .
co(F) F

⌘ = 1

⌘(`,F , P ⇤)
⇡ F f⇤ 2 F

min
p2F

E[� ln p(Y )] = min
p2co(F)

E[� ln p(Y )],

E[`(Y, f⇤(X))]  E[�1

⌘
ln

Z
e�⌘`(Y,f(X))⇡(df)]



Log-loss and convexity for 

• Corollary: For log-loss, 1-stochastic mixability means

where              denotes the convex hull of     .
co(F) F

⌘ = 1

p⇤ p⇤

p✓⇤
p✓⇤

Stochastically mixable

Not stochastically mixable

F F

co(F)

co(F)

1

min
p2F

E[� ln p(Y )] = min
p2co(F)

E[� ln p(Y )],



• Pseudo-likelihoods: 

Convexity interpretation with 
pseudo-likelihoods

• Corollary:                  is   -stochastically mixable iff⌘(`,F , P ⇤)

min
p2PF (⌘)

E[� 1

⌘ ln p(Y |X)] = min
p2co(PF (⌘))

E[� 1

⌘ ln p(Y |X)]

pf,⌘(Y |X) = e�⌘`(Y,f(X))

PF (⌘) = {pf,⌘(Y |X) | f 2 F}
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Adapting to the margin / 

• Penalized empirical risk minimization:

• Optimal                depends on    / the margin

• Single model: take                                    no need to know

• Model selection:                     ,

⌘

f̂ = argmin
f2F

n 1

n

n
X

i=1

`(Yi, f(Xi)) + � · pen(f)
o

⌘� / 1/⌘

pen(f) = const. �

F =
[

m

Fm pen(f) = pen(m) 6= const.



Convexity testing



Convexity testing

• Corollary:                  is   -stochastically mixable iff(`,F , P ⇤)

min
p2PF (⌘)

E[� 1

⌘ ln p(Y |X)] = min
p2co(PF (⌘))

E[� 1

⌘ ln p(Y |X)]

⌘



Convexity testing

• [Grünwald, 2011]: pick the largest    such that 

• Corollary:                  is   -stochastically mixable iff(`,F , P ⇤)

min
p2PF (⌘)

E[� 1

⌘ ln p(Y |X)] = min
p2co(PF (⌘))

E[� 1

⌘ ln p(Y |X)]

⌘

⌘

min

p2PF (⌘)

1

n

nX

i=1

� 1

⌘ ln p(Yi|Xi) � min

p2co(PF (⌘))

1

n

nX

i=1

� 1

⌘ ln p(Yi|Xi)� something

where “something” depends on concentration inequalities and 
penalty function.



Summary

• Stochastic mixability           fast rates of convergence in 
different settings: 

• statistical learning (margin condition)

• sequential prediction (mixability)

• Convexity interpretation

• Idea for adaptation to the margin



References

• P.D. Grünwald. Safe Learning: bridging the gap between Bayes, MDL and statistical learning theory via empirical 
convexity. Proceedings 24th Conference on Learning Theory (COLT 2011), pp. 551-573, 2011.

• J.-Y. Audibert, Fast learning rates in statistical inference through aggregation, Annals of Statistics, 2009

• B.J.K. Kleijn, A.W. van der Vaart, Misspecification in Infinite-Dimensional Bayesian Statistics, The Annals of 
Statistics, 2006

• A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of Statis- tics, 32(1):135–166, 
2004. 

• Y. Kalnishkan and M. V. Vyugin. The weak aggregating algorithm and weak mixability. Journal of Computer and 
System Sciences, 74:1228–1244, 2008. 

• J. Li, Estimation of Mixture Models (PhD thesis), Yale University, 1999

• V. Vovk. A game of prediction with expert advice. In Proceedings of the Eighth Annual Conference on 
Computational Learning Theory, pages 51–60. ACM, 1995.

Slides and NIPS 2012 paper: www.timvanerven.nl

http://homepages.cwi.nl/%7Epdg/ftp/safelearncolt.pdf
http://homepages.cwi.nl/%7Epdg/ftp/safelearncolt.pdf
http://homepages.cwi.nl/%7Epdg/ftp/safelearncolt.pdf
http://homepages.cwi.nl/%7Epdg/ftp/safelearncolt.pdf
http://www.timvanerven.nl
http://www.timvanerven.nl

