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✤ Bayes Factors and MDL Model Selection
✤ Consistent, but suboptimal predictions

✤ Explanation: the Catch-up Phenomenon
✤ Predictive MDL interpretation of Bayes factors
✤ Markov chain example

✤ Solution: the Switch Distribution
✤ Simulations & Theorems: consistent + optimal predictions
✤ Cumulative risk



Two Desirable Properties in 
Model Selection 
✤ Suppose                         are statistical models

(sets of probability distributions:                                  )
✤ Consistency: If some      in model         generates the data, then         is 

selected with probability one as the amount of data goes to infinity.
✤ Rate of convergence: How fast does an estimator based on the 

available models converge to the true distribution?

Consistent Optimal rate of convergence

BIC, Bayes, MDL
AIC, LOO Cross-validation

Yes
No

No
Yes

AIC-BIC Dilemma

Mk = {p✓|✓ 2 ⇥k}
p⇤ Mk⇤ Mk⇤
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Bayesian Prediction

✤ Given model                                  with prior       and data
                               , the Bayesian marginal likelihood is

✤ Given        predict with estimator

p̄k(x
n) ⌘ p(xn|Mk) :=

Z

⇥k

p✓(x
n)wk(✓)d✓

p̄k(xn+1|xn) =
p̄k(xn+1)

p̄k(xn)
=

Z

⇥k

p✓(xn+1|xn)wk(✓|xn)d✓

Mk = {p✓|✓ 2 ⇥k} wk

x

n = (x1, . . . , xn)

Mk



Bayes Factors and MDL
Model Selection
✤ Suppose we have multiple models 

✤ Bayes factors:  Put a prior     on model index k and choose            to 
maximize the posterior probability

✤            is minimizing

p(Mk|xn) :=
p̄k(xn)⇡(k)P
k0 p̄k0(xn)⇡(k0)

� log p̄k(x
n
)� log ⇡(k) ⇡ � log p̄k(x

n
)

k̂(xn)

k̂(xn)
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Example: Histogram Density 
Estimation

✤ I.I.D. data in interval [0,1]
✤ Given k, estimate density by the estimator in the figure
✤ This is equivalent to      for conjugate Dirichlet(1,...,1) prior 

✤ How should we choose the number of bins k?
✤ Too few: does not capture enough structure
✤ Too many: overfitting (many bins will be empty)

✤ [Yu, Speed, ‘92]: Bayes does not achieve the optimal rate of 
convergence!

Mk = {p✓|✓ 2 ⇥k ⇢ Rk}
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CV Selects More Bins than Bayes
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CV Predicts Better than Bayes

Prediction error in log loss at sample size n: 
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CV Predicts Better than Bayes...

✤ Density not a histogram, but can be approximated arbitrarily well

✤ LOO-CV, AIC converge at optimal rate

✤ Bayesian model selection selects too few bins (underfits)!
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... but CV is Inconsistent!

✤ Now suppose data are sampled from the uniform distribution

✤ LOO cross-validation selects 2.5 bins on average: it is inconsistent! 
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✤ Consistent, but suboptimal predictions

✤ Explanation: the Catch-up Phenomenon
✤ Predictive MDL interpretation of Bayes factors
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✤ Solution: the Switch Distribution
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✤ Cumulative risk



Logarithmic Loss

If we measure prediction quality by log loss

then minus log likelihood = cumulative log loss:

where 

Proof. Take the negative logarithm of the chain rule:

loss(p, x) := � log p(x)

� log p(x1, . . . , xn) =

nX

i=1

� log p(xi|xi�1
)

p(x1, . . . , xn) =
nY

i=1

p(xi|xi�1)

x

i�1 = (x1, . . . , xi�1)



The Most Important Slide

Bayes factors and MDL pick the k minimizing

Prequential/predictive MDL interpretation:
select the model        such that, when used as a sequential prediction 
strategy,      minimizes cumulative sequential prediction error

[Dawid ’84, Rissanen ’84]

� log p̄k(x1, . . . , xn) =

nX

i=1

� log p̄k(xi|xi�1
)

Mk

p̄k

}
Prediction error for model        at sample size i!Mk



Example: Markov Chains

Natural language text: “The Picture of Dorian Gray” by Oscar Wilde

"... But beauty, real beauty, ends where an 
intellectual expression begins. Intellect is in itself 
a mode of exaggeration, and destroys the 
harmony of any face. The moment one sits down 
to think, one becomes all nose, or all forehead, or 
something horrid. Look at the successful men in 
any of the learned professions. How perfectly 
hideous they are! ..."

Compare the first-order and second-order Markov chain models 
on the first n characters in the book,
with uniform priors on the transition probabilities 
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Example: Markov chains

  

Markov Chain Example

Compare marginal likelihoods for the first-order and second-order 
Markov chain models on the first    characters in The Picture of 
Dorian Gray. (Dirichlet(1,...,1) priors on the transition probabilities.)

Sample size (n)

(green line equals the log of the Bayes factor)          

Compare the marginal likelihoods



Example: Markov chains

  

Markov Chain Example

Compare marginal likelihoods for the first-order and second-order 
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Example: Markov chains

  

Markov Chain Example

Sample size (n)

For                    , select complex model
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Example: Markov chains

� log p̄2(x
n
)� [� log p̄1(x

n
)] =

nX

i=1

loss(p̄2, xi)�
nX

i=1

loss(p̄1, xi)
  

Markov Chain Example

Sample size (n)

For                    , select complex model

For                  , complex model makes 
the best predictions!



The Catch-up Phenomenon

✤ Given “simple” model        and a “complex” model    
✤ Common phenomenon: for some sample size s

✤ simple model predicts better if n ≤ s
✤ complex model predicts better if n > s

✤ Catch-up Phenomenon: Bayes/MDL exhibit inertia
✤ complex model has to “catch up”,

so we prefer simpler model for a while even after n > s!

✤ Remark: Methods similar to Bayes factors (e.g. BIC) will also exhibit the catch-up 
phenomenon. Bayesian model averaging does not help either!

M1 M2



Example: Markov chains

  

Markov Chain Example

Bayes / MDL

Can we modify Bayes so as to do as
well as the black curve? Almost!Can we modify Bayes so as to do as well as the black curve?
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The Best of Both Worlds

✤ Catch-up phenomenon: new explanation for poor predictions of 
Bayes (and other BIC-like methods)

✤ We want a model selection/averaging method that, in a wide variety 
of circumstances,
✤ is provably consistent,
✤ provably achieves optimal convergence rates

✤ But it has previously been suggested that this is impossible!
[Yang ’05]



The Best of Both Worlds

✤ Catch-up phenomenon: new explanation for poor predictions of 
Bayes (and other BIC-like methods)

✤ We want a model selection/averaging method that, in a wide variety 
of circumstances,
✤ is provably consistent,
✤ provably achieves optimal convergence rates

✤ But it has previously been suggested that this is impossible!
[Yang ’05]

✤ So we have to be careful to avoid impossibility results...



The Switch Distribution

✤ To avoid the catch-up phenomenon we would like to switch between 
models at switch-point s:

✤ Q. But how do we know when to switch?!

psw(x
n|s) :=

sY

i=1

p̄1(xi|xi�1)⇥
nY

i=s+1

p̄2(xi|xi�1)
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The Switch Distribution

✤ To avoid the catch-up phenomenon we would like to switch between 
models at switch-point s:

✤ Q. But how do we know when to switch?!

✤ A. Switch distribution: do not put a prior    on models, but on when 
to switch between models:

✤ Generalizes to an arbitrary (unknown) number of switches between 
any countable number of models.

✤ For many model classes, method is computationally feasible.

psw(x
n|s) :=

sY

i=1

p̄1(xi|xi�1)⇥
nY

i=s+1

p̄2(xi|xi�1)

psw(x
n) :=

X

s�0

psw(x
n|s)⇡(s)
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Switching Resolves the Catch-up 
Phenomenon

✤ Pay less than                                                    32 bits for not knowing s
✤ Gain more than 20 000 bits by switching
✤ Almost as good as knowing in advance when to switch!

  

Switching Resolves the Catch-Up Phenomenon

● Pay less than                                                  32 bits for not knowing
● Gain more than 20 000 bits by switching
● Almost as good as knowing in advance when to switch
● Efficient algorithm

Sample size (n)

Switch distribution

2 log(s+ 1) = 2 log(50 001) ⇡



Switch Distribution is Consistent 
for Histograms
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Switch Distribution Predicts Well 
with Histograms
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Theorem: Switching is Consistent

✦ Let                        be models with priors                    on parameter sets
                   and marginal likelihoods 

✦ Suppose                  are asymptotically sufficiently distinguishable in 
a suitable sense.
✦ For example, it is sufficient if the models consist of i.i.d. or Markov distributions, the 

parameter sets                    are of different dimensionality and the priors have a 
density w.r.t. Lebesgue measure.

✦ Then, for all     and all                 , except for a subset of          with prior
      -probability 0, the switch distribution is consistent in that

with    -probability 1.

M1,M2, . . . w1, w2, . . .
p̄1, p̄2, . . .

p̄1, p̄2, . . .

k⇤

wk⇤

p⇤ 2 Mk⇤ Mk⇤

lim
n!1

psw(Mk⇤ | Xn) = 1

p⇤

⇥1,⇥2, . . .

⇥1,⇥2, . . .



Setting for Prediction

✤ Let                       be i.i.d. models that can approximate a large set of 
i.i.d. distributions        arbitrarily well (in Kullback-Leibler 
divergence)

✤ For example,        may be the set of all densities on [0,1] with bounded 
derivatives and                       may be histograms

✤ Suppose data                                   are i.i.d. with distribution 

M1,M2, . . .

p⇤ 2 M⇤

M⇤

M1,M2, . . .

M⇤

Xn = (X1, . . . , Xn)



Risk

✤ Let             be the prediction of outcome       for some estimator  
✤ For example,    may be based on the Bayesian marginal likelihood

✤ The risk is the expected divergence of the predictions of    from    :

✤ We take     to be the Kullback-Leibler divergence:

rn(p
⇤, p) := EXn�1⇠p⇤ D(p⇤kpXn�1)

D(p⇤kpXn�1
) = EXn⇠p⇤

[loss(pXn�1 , Xn)� loss(p⇤, Xn)]

pXn�1 Xn p
p

p p⇤

D



Cumulative Risk

The cumulative risk is

Motivation:
✤ Appropriate when the goal is sequential prediction
✤ Can convert to ordinary risk via online-to-batch conversion

[Yang, Barron, ‘99]
✤ Equals redundancy in universal coding
✤ Avoids Yang’s impossibility results

Rn(p
⇤, p) =

nX

i=1

ri(p
⇤, p) = EXn

⇥ nX

i=1

loss(pXi�1 , Xi)�
nX

i=1

loss(p⇤, Xi)
⇤



Theorem: Switching Achieves 
Minimax Cumulative Rate
✤ Let                  be estimators for the models                       

An oracle chooses model                             , knowing the true 
distribution and the data.

✤ Suppose the cumulative risk of the oracle grows fast enough that

for some            and the effective number of models is polynomial in   , 
i.e.                              for some beta > 0.

✤ Then the switch distribution, with suitable prior    , predicts at least 
as well as the oracle:

(log n)2+↵

supp⇤2M⇤ Rn(p⇤, p̄k�
)

! 0

lim sup
n!1

supp⇤2M⇤ Rn(p⇤, psw)

supp⇤2M⇤ Rn(p⇤, p̄k�)
 1.

p̄1, p̄2, . . . M1,M2, . . .
k� ⌘ k�(p⇤, Xn)

↵ > 0
k�(p⇤, Xn)  n�

⇡

n
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Conclusion

✤ Bayes and other BIC-like methods select the model that minimizes 
cumulative prediction error.

✤ If the best-predicting model depends on the sample size, then they 
suffer from the catch-up phenomenon.

✤ This explains the AIC-BIC dilemma.
✤ The switch-distribution provably resolves the catch-up phenomenon:

Consistent Optimal rate of convergence

BIC, Bayes, MDL
AIC, LOO Cross-validation
Switch distribution

Yes
No
Yes

No
Yes

Yes (for cumulative risk)
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Bayesian Prediction

✤ Given model                                  with prior       and data
                               , the Bayesian marginal likelihood is

✤ Given        predict with estimator

✤ If k is unknown, Bayesian model averaging also puts a prior    on k:

p(xn+1|xn) =
X

k

p̄k(xn+1|xn)⇡(k|xn)

p̄k(x
n) ⌘ p(xn|Mk) :=

Z

⇥k

p✓(x
n)wk(✓)d✓

p̄k(xn+1|xn) =
p̄k(xn+1)

p̄k(xn)
=

Z

⇥k

p✓(xn+1|xn)wk(✓|xn)d✓

Mk = {p✓|✓ 2 ⇥k} wk

x

n = (x1, . . . , xn)

Mk

⇡


