MetaGrad: Multiple Learning Rates in
Online Learning

Universiteit

Tim van Erven Leiden

Joint work with: Wouter Koolen, Peter Griinwald

Optimization and Learning Workshop
Toulouse, September 11, 2018

Example: Sequential Prediction for Football Games

Precursor to modern football in China,
Han Dynasty (206 BC — 220 AD)

v

v

Before every match t in the English Premier
League, my PhD student Dirk van der Hoeven
wants to predict the goal difference Y;

Given feature vector X; € R, he may predict
Y; = w] X; with a linear model

After the match: observe Y;

Measure loss by ¢(w;) = (Y — Y;)? and
improve parameter estimates: w; — W41

Example: Sequential Prediction for Football Games

» Before every match t in the English Premier
League, my PhD student Dirk van der Hoeven
wants to predict the goal difference Y;

> Given feature vector X; € R?, he may predict
Y; = w] X; with a linear model

» After the match: observe Y;

» Measure loss by ¢:(w;) = (Y — ¥:)? and
improve parameter estimates: w; — W41

Precursor to modern football in China,
Han Dynasty (206 BC — 220 AD)

Goal: Predict almost as well as the best possible parameters u:

Regrety = Zﬁr(wt) - Zﬂt(u)

t=1 t=1

Online Convex Optimization

1. fort =1,2,..., T do

2: Learner estimates w; from convex U C R¢

3: Nature reveals convex loss function ¢; : U — R
4: Learner incurs loss ¢;(w;)

5. end for

Online Convex Optimization

fort=1,2,..., T do
Learner estimates w; from convex U C R¢
Nature reveals convex loss function ¢; : U — R
Learner incurs loss £;(w;)
end for
Viewed as a against Nature:

-
V' = minmax minmax --- min max max th(wt) - Zﬂt(u)
-1

w4 wr 0 wr At uweU

t

1

Regret?

Online Convex Optimization

1. fort =1,2,..., T do

2: Learner estimates w; from convex U C R¢

3: Nature reveals convex loss function ¢; : U — R
4: Learner incurs loss ¢;(w;)

5. end for

Viewed as a against Nature:

-
V' = minmax minmax --- min max max th(wt) - Zﬂt(u)
-1

w4 wy A wr L1 uweU =1

Regret?
Methods: Efficient computations using only gradient g, = V ¢ (w)

Wi = W — 1),G¢ (online gradient descent)

Wiyl = Wr —)X t41G¢ (online Newton Step)

where T11 = (el + 212 3L, gsgd) L.

The Standard Picture

Minimax rates based on curvature (eunded domain and gradients) [Hazan, 2016]:

Convex #; VT | OGD with Nt X \/LE

Strongly convex £, | InT | OGD with 7, < 1

Exp-concave ¢; | dIn T | ONS with n o< 1

» Strongly convex: second derivative at least a > 0, implies exp-concave

> Exp-concave: e~ %% concave
Satisfied by log loss, logistic loss, squared loss, but not hinge loss

The Standard Picture

Minimax rates based on curvature (eunded domain and gradients) [Hazan, 2016]:

Convex £ VT | OGD with Nt X \/LE

Strongly convex £; | InT | OGD with n, o< 1

Exp-concave ¢; | dIn T | ONS with n < 1

Different method in each case. (Requires sophisticated users.)
Theoretical tuning of n; very conservative

What if curvature varies between rounds?

In many applications data are stochastic (i.i.d.) Should be easier
than worst case. . .

vV vyYye.y

Minimax rates based on curvature (eunded domain and gradients) [Hazan, 2016]:

vV vyYye.y

The Standard Picture

Convex /¢

Strongly convex £,

Exp-concave /;

VT
InT

dinT

OGD with 7 \/LE

OGD with n; %

ONS with n < 1

Different method in each case. (Requires sophisticated users.)

Theoretical tuning of 7, very conservative
What if curvature varies between rounds?
In many applications data are stochastic (i.i.d.) Should be easier

than worst case. ..

Difficulty: All existing methods learn
overhead of learning best

at too slow rate [HP2005] so

ruins potential benefits

MetaGrad: Multiple Eta Gradient Algorithm

Ui UK Ta
.I Ii .I %ln(T)
N——
<16

&

2

MetaGrad: Multiple Eta Gradient Algorithm

MetaGrad: Multiple Eta Gradient Algorithm

MetaGrad: Multiple Eta Gradient Algorithm

MetaGrad: Multiple Eta Gradient Algorithm

MetaGrad: Multiple Eta Gradient Algorithm

MetaGrad: Multiple Eta Gradient Algorithm

~

Zi TiTiW;j
Zi ini

i 2r?
T < ;e niri—mn;r;
where r; = (w; — w)"g

w =

Tilted Exponential Weights

MetaGrad: Multiple Eta Gradient Algorithm

~

Zi TiTiW;j
Zi ini

22
=Nl

w =

i e M
where r; = (w; — w)"g

Tilted Exponential Weights

MetaGrad: Multiple Eta G =; « (! + 247gg") ?
w; — w; — NiX;g(l+2nir;)

771 7]2 773 = Quasi Newton update

~

Zi TiTiW;j
Z,' ini

2.2
i e T g = Vf(w)
where r; = (w; — w)"g

w =

Tilted Exponential Weights

MetaGrad: Provable Adaptive Fast Rates

Theorem (Van Erven, Koolen, 2016)

MetaGrad'’s Regret is bounded by
VTInInT

-
Regrety < Z(wt —u)Tg; <

t=1 VVidIinT +dInT

Vi = Z((u —we)"ge)’°

where

> By convexity, {;(w;) — {(u) < (w; — u)Tg;.

» Optimal learning rate 7) depends on V¥, but w unknown!
Crucial to learn best learning rate from data!

MetaGrad: Provable Adaptive Fast Rates

Theorem (Van Erven, Koolen, 2016)

MetaGrad'’s Regret is bounded by
VTInInT

f dinT+dInT
-

= (w—w)Tg)? = Y (u — we)Tgegd (u — wy).

t=1

-
Regrety < Z(wt —u)Tg; <
t=1

where

> By convexity, {;(w;) — {(u) < (w; — u)Tg;.
» Optimal learning rate 7) depends on V¥, but w unknown!

6/17

Consequences

1. Non-stochastic adaptation:

Convex /;
Exp-concave /¢,

Fixed convex ¢; = /¢

VTIninT
dinT
dinT

Consequences

1. Non-stochastic adaptation:

Convex /;
Exp-concave /¢,

Fixed convex ¢; = /¢

VTIninT
dinT
dinT

2. Stochastic without curvature

Suppose ¢; i.i.d. with stochastic optimum u* = arg min,, ¢, E¢[¢(u)].

Then expected regret E[Regret%]:

Absolute loss* £:(w) = |w — X¢|
Hinge loss max{0,1 — Y:(w, X;)}

InT
dinT

(BdIn T)Y/C=A) T-5)/(2=5)

*Conditions apply

Related Work: Adaptivity to Stochastic Data in

Batch Classification [Tsybakov, 2004]

1 1

05 0.5 |

X X X
easy moderate hard

g=1 B=3 p=0

Related Work: Adaptivity to Stochastic Data in
Batch Classification [Tsybakov, 2004]

1 1 1

0.5 0.5 0.5 /

X X X
easy moderate hard

p=1 B=3 5=0
Definition ((B,)-Bernstein Condition)
Losses are i.i.d. and
E ({(w) — l(u*))* < B(E [((w) — {(u*)])B for all w,

where u* = arg min,, E[¢(w)] minimizes the expected loss.

Bernstein Condition for Online Learning
Suppose ¢; i.i.d. with stochastic optimum u* = arg minIlE[E(u)].
ucl

Standard Bernstein condition:

E (¢(w) — (u*))? < B(E[{(w) — ((u?)])” forall w e U.

Bernstein Condition for Online Learning
Suppose ¢; i.i.d. with stochastic optimum u* = arg minIlEjI[é(u)].
ucl

E (¢(w) — (u*))? < B(E[{(w) — ((u?)])” forall w e U.

Replace by
> Apply with (u) = (u, V £(w)) instead of /!
» By convexity, /(w) — £(u*) < {(w) — (u*).

E ((w — u*)TV {(w))? < B(E[(w —u*)TV {(w)])’3 for all w € U.

Bernstein Condition for Online Learning
Suppose /; i.i.d. with stochastic optimum u* = arg minIlEjl[é(u)].
ucl

E (¢(w) — (u*))? < B(E[{(w) — ((u?)])” forall w e U.

Replace by
> Apply with (u) = (u, V £(w)) instead of /!
» By convexity, /(w) — £(u*) < {(w) — (u*).

E ((w — u*)TV {(w))? < B(E[(w —u*)TV {(w)])’3 for all w € U.

Hinge loss (domain, gradients bounded by 1): 8 =1, B = oxa sl

2Amax(E[X X T])

Bernstein Condition for Online Learning
Suppose ¢; i.i.d. with stochastic optimum u* = arg minlgl[é(u)].
ucl

E (¢(w) — (u*))? < B(E[{(w) — ((u?)])” forall w e U.

Replace by
> Apply with (u) = (u, V £(w)) instead of /!
» By convexity, /(w) — £(u*) < {(w) — (u*).

E((w — u*)TV f(w))? < B(E[(w — u*)TV f(w)])’ for all w € U.

Hinge loss (domain, gradients bounded by 1): 8 =1, B = oxa sl

Theorem (Koolen, Griinwald, Van Erven, 2016)

E[Regret’ | < (Bd In T)Y/ =5 7(=5)/(2=5)
Regret® < (BdIn T —Ing)/C=7) 70=0)/C=6) "y p >1_5

2Amax(E[X X T])

MetaGrad Simulation Experiments

600 _
600 —— AdaGrad _ I\A/IiTSCT‘::d
—— MetaGrad 500
500
400 - 400
. o
° >
g; 300 ® 300
200 200
100 100
— 0 - L
0
2 4 6 8 10 2 ‘ T ° ° 140
x 10
T x 10* Stochastic Online: £4(u) = |u — X¢|

Offline: £¢(u) = |u — 1/4] where Xp = i% i.id. w.p. 0.4 and 0.6.

» MetaGrad: O(In T) regret, AdaGrad: O(+/T), match bounds
» Functions neither strongly convex nor smooth

» Caveat: comparison more complicated for higher dimensions, unless
we run a separate copy of MetaGrad per dimension, like the diagonal
version of AdaGrad runs GD per dimension

10/17

MetaGrad Football Experiments

Regression results square loss I2ball

20000 —— Metagrad full
17500 —— Metagrad diag
—— Adagrad diag

15000
12500
5 Dirk van der Hoeven
& 10000 (my PhD student)
o<
7500
5000

2500

0 1000 2000 3000 4000 5000 6000 = -
T Raphaél Deswarte
(visiting PhD student)
> Predict difference in goals in 6000 football games in English Premier
League (Aug 2000-May 2017).
» Square loss on Euclidean ball

» 37 features: running average of goals, shots on goal, shots over
m=1,...,10 previous games; multiple ELO-like models; intercept.

11/17

Analysis

Second-order for each 7 of interest (from a grid):

0 (u) = n(u —we)Tge + n°(u — we)"geg! (u — wy)

Analysis

Second-order for each 7 of interest (from a grid):
C(u) = 1w — we)Tge + n*(u — we)"gegl (u — we)
One algorithm per 7 produces w; such that

T T

Zf?(w?) - Zﬁ?(U) S ;rave(n)
t=1

Analysis

Second-order for each 7 of interest (from a grid):
C(u) = 1w — we)Tge + n*(u — we)"gegl (u — we)
One algorithm per 7 produces w; such that

T T

Zﬂﬁ(w?) - ZK?(U’) S s’LILave(n)
t=1

Single algorithm produces w; such that

T

PHCARD HCA RSN R

t=1 t=1

Analysis

Second-order for each 7 of interest (from a grid):

0 (u) = n(u —we)Tge + n°(u — we)"geg! (u — wy)

One algorithm per 7 produces w; such that
T T
S 0(wp) = 3 0 (u) < Riye(n)
t=1 t=1
Single algorithm produces w; such that
T
D (we) =Y (w]) < Rmaster(n)
=1 =1
t - t

Together: — ZtT:l E?(u) < qufave(n) + Rmaster(n) vn

Analysis
Second-order for each 7 of interest (from a grid):
01 (w) = n(u — we)Tge + 7 (u — we)Tgeg] (v — we)
One algorithm per 7 produces w; such that

T T

ZE?(’U]?) — Zf?(u) < ;rave(n)
t=1

t=1
Single algorithm produces w; such that

T

> w) =D (w]) < Reasierm) ¥

t=1 t=1
Together: — ZtT:1 £ (u) < RYe(n) + Rmaster(n) V1
T
R
Z(wt _ U)Tgt < slave

t=1

(1) + Rmaster(7)
7

+ V7

Analysis
Second-order for each 7 of interest (from a grid):
((u) = n(u — we)Tge + n*(u — we)Tgeg] (u — w)
One algorithm per 7 produces w; such that

T T

> fw) =Y 0i(u) < Rie(n)

t=1
Single algorithm produces w; such that

T

S0 (w) =3 O (w]) < Ruaserm) ¥

t=1 t=1

Together: — Zthl E?(u) < Rsulave(n) + Rmaster(7) V1)

T

Z(wt - U)Tgt <

t=1

o()+ O()
U

+nV7¢

Analysis
Second-order for each 7 of interest (from a grid):

0 (u) = n(u —we)Tge + n°(u — we)"geg! (u — wy)

One algorithm per 7 produces w; such that
T T
Yo wi) =Yl (u) < Rife(n)
t=1 t=1
Single algorithm produces w; such that
T
Zw(wt) - Z@?(w?) < Rimaster(1) v
=1 -1
t: t
=0

Together: — Z;l 0 (u) < RYe(n) + Rmaster(n) V1

T

3w, —uyrg, < AL DEOONT) v o (vpdinT)

t=1 N

MetaGrad Master

Goal: aggregate slave predictions wy; for all 5 in .
. ., 270 o1 o= 5 loga 71
exponentially spaced grid &5z, 556, -+ “5pg —

Difficulty: master's predictions must be good w.r.t. different loss
functions ¢} for all n simultaneously

Compute exponential weights with performance of each 17 measured by
its own surrogate loss:

72 e"l(wn)
mi(n)e s<t s (Ws
() = 0

Then predict with exponentially weighted average:

2y me(n) 1w
2 me(n)

wt:

13/17

MetaGrad Master Analysis

Potential ¢T = Z 7'('1("7)e_ E;r:l K?(w?)
n
Proof outline:
Or <Py ;<< Pp=1
7T1(77)e7 ZZ—:1 £ (wy') <1 Vn

;
> 0w = (w) < —Inm(n)
t=1 t=1

=0

14 /17

MetaGrad Master Analysis

Potential CDT = Z 7'('1("7)e_ E;r:l K?(w?)
n

Proof outline:
Or <Py ;<< Pp=1

m(p)e T E@D <1 vy

T T
Yt (we) =Y (wi) < —In m(n)
t=1 t=1

=0

Grid has [% log, T + 1 learning rates, so for heavy-tailed prior:

—Inm(n) = O(1n 1 7)

14 /17

MetaGrad Master Analysis: Decreasing Potential

Surrogate loss £ (u) = n(u — w:)Tg: + n*(u — w:)Tg:g7 (u — w;) is
, even if f; is not.

Upper bound by tangent at u = wy:

e 1) < 14w, — u)Tg,

15/17

MetaGrad Master Analysis: Decreasing Potential

Surrogate loss ¢} (u) = n(u — w;)Tg: + n*(u — w:)Tg:g7 (u — w;) is
, even if f; is not.

Upper bound by tangent at u = wy:

e < 14w, — u)Tg,
Choose master's weights to ensure decreasing potential:
Oy —dr_y =Y m(n)e” S Hw) (e—e’%(w’%) - 1)

n
<Y mme Zer Dy (wr — w])Tgr
n

=0 for any g1

15/17

Summary

MetaGrad:
» Consider simultaneously
» Learn 1) from the data, at very fast rate (pay only Inin T)

» New adaptive variance bound

Variance bound implies fast rates in:

» all known cases: exp-concave, strong convex

> new cases with stochastic data, characterized by online version of
Bernstein condition

16

17

References

» T. van Erven and W. M. Koolen. Metagrad: Multiple learning
rates in online learning. In Advances in Neural Information
Processing Systems 29 (NIPS), pages 36663674, 2016.

» W. M. Koolen, P. Griinwald, and T. van Erven. Combining
adversarial guarantees and stochastic fast rates in online
learning. In Advances in Neural Information Processing Systems 29
(NIPS), pages 4457-4465, 2016.

P. L. Bartlett, E. Hazan, and A. Rakhlin. Adaptive online gradient descent. In Advances in Neural Information Processing Systems 20
(NIPS), pages 65-72, 2007.

C. B. Do, Q. V. Le, and C.-S. Foo. Proximal regularization for online and batch learning. In Proceedings of the 26th Annual International
Conference on Machine Learning (ICML), pages 257-264, 2009.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine
Learning Research, 12:2121-2159, 2011.

E. Hazan. Introduction to online optimization. Draft, April 10, 2016, available from ocobook.cs.princeton.edu, 2016.

E. Hazan and S. Kale. Extracting certainty from uncertainty: Regret bounded by variation in costs. Machine learning, 80(2-3):165-188,
2010.

F. Orabona. Simultaneous model selection and optimization through parameter-free stochastic learning. In NIPS 27, pages 1116-1124,
2014.

F. Orabona and D. Pal. Coin betting and parameter-free online learning. In NIPS 29, 2016.

F. Orabona, K. Crammer, and N. Cesa-Bianchi. A generalized online mirror descent with applications to classification and regression.
Machine Learning, 99(3):411-435, 2015.

A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of Statistics, 32(1):135-166, 2004.

17 /17

ocobook.cs.princeton.edu

