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Extreme Outliers Can Break Learning
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Logistic regression without outlier 
Logistic regression with outlier

Outlier

Reasons for outliers:
I Naturally heavy-tailed data
I A small subset of malicious users trying to corrupt data stream
I Glitches in cheap sensors

Heavily studied:
I In statistics [Tukey, 1959, Huber, 1964], stochastic optimization, etc.
I But not yet in Online Convex Optimization
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Formalizing Robust OCO

Standard OCO setting:

Given convex domain W ⊂ Rd with diameter(W) ≤ D

1: for t = 1, 2, . . . ,T do

2: Predict wt in W
3: Observe convex loss function ft :W → R with gradient gt = ∇ft(wt)

4: end for

Robust regret: RT (u,S) =
∑
t∈S

(
ft(wt)− ft(u)

)

Challenges:
I Inliers S ⊂ {1, . . . ,T} unknown (chosen by adversary)
I Bounds cannot depend on outliers at all, but must scale with

G (S) = max
t∈S
‖gt‖.
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Robustifying Any OCO Algorithm

1. Any OCO ALG with regret bound BT (G ) if gradients have length
at most G

2. Top-k Filter: simple strategy to filter out large gradients

Theorem (At most k outliers)

On linear losses, ALG + Top-k Filter achieves

RT (u,S) ≤ BT

(
2G (S)

)
+ 4DG (S)(k + 1) for any S : T − |S| ≤ k.

Feed ALG gradients ≤ 2G (S)

Losses Minimax Robust Regret

General convex O(
√
T + k)

General convex + i.i.d. "

Strongly convex O(ln(T ) + k)
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Efficient Filtering Approach

Top-k Filter:

I Maintain list Lt of k + 1 largest gradient lengths seen so far

I Filter round if ‖gt‖ > 2 minLt ; otherwise pass to ALG

Main Ideas:

1. Never pass ALG gradients > 2G (S):
I Lt contains at least 1 inlier, because at most k outliers
I Hence minLt ≤ G(S)

2. Overhead for filtering is O(k)
I Every filtered round is also added to Lt

I Therefore minLt (at least) doubles every k + 1 filtered rounds
I Hence last k + 1 filtered rounds dominate
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Application: Robustified Online-to-Batch

Huber ε-contamination model: Pε = (1− ε)P + εQ

Distribution of interest

Outlier distribution

I ft(w) = f (w, ξ) where ξ ∼ Pε

I Inlier risk: RiskP(w) = Eξ∼P [f (w, ξ)]

Corollary (Optimal Rate via Robust Online-to-Batch)

Suppose ‖∇f (w, ξ)‖ ≤ G a.s. when ξ ∼ P is an inlier.

Then iterate average w̄T = 1
T

∑T
t=1 wt of OGD + Top-k Filter achieves

RiskP(w̄T )− min
u∈W

RiskP(u) = O

(
DGε+ DG

√
ln(1/δ)

T

)

with Pε-probability at least 1− δ, for some k tuned for ε, δ,T .
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Quantile Outliers

Which extra assumptions allow
sublinear dependence on number of outliers k?

I ‖gt‖ ≤ L‖Xt‖ for i.i.d. Xt (e.g. hinge loss, logistic loss)

I Inliers Sp are rounds s.t. ‖Xt‖ less than p-quantile Xp

Theorem (Sublinear Outlier Overhead)

Suppose ALG has regret bound BT (X ), concave in T , if non-filtered Xt

have length at most X . Then ALG + p-Quantile Filter achieves

E
[

max
u∈W

RT (u,Sp)

]
≤ BpT (Xp) + O

(
LDXp

√
p(1− p)T lnT + ln(T )2

)
.

p-Quantile Filter:

I Filter when ‖Xt‖ ≥ lower-confidence bound on Xp

7 / 8



Quantile Outliers

Which extra assumptions allow
sublinear dependence on number of outliers k?

I ‖gt‖ ≤ L‖Xt‖ for i.i.d. Xt (e.g. hinge loss, logistic loss)

I Inliers Sp are rounds s.t. ‖Xt‖ less than p-quantile Xp

Theorem (Sublinear Outlier Overhead)

Suppose ALG has regret bound BT (X ), concave in T , if non-filtered Xt

have length at most X . Then ALG + p-Quantile Filter achieves

E
[

max
u∈W

RT (u,Sp)

]
≤ BpT (Xp) + O

(
LDXp

√
p(1− p)T lnT + ln(T )2

)
.

p-Quantile Filter:

I Filter when ‖Xt‖ ≥ lower-confidence bound on Xp

7 / 8



Summary

Robust regret: measure regret only on (unknown) inlier rounds

Price of Robustness = Overhead over usual regret rate:

I At most k adversarial outliers: O(k)

I p-Quantile outliers: O(
√
p(1− p)T ln(T ) + ln(T )2)

PS. I am looking for a postdoc, starting anytime in 2022.
Please get in touch if you want to come to Amsterdam!
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