The Limits of Explainable Machine Learning:
Some Things Are Simply Impossible

Delft, October 3, 2022

Tim van Erven

Joint work with:
Hidde Fokkema Rianne de Heide
The Need for Explanations:

Why did the machine learning system

- Classify my company as high risk for money laundering?
- Reject my bank loan?
- Give a certain medical diagnosis?
- Make a certain mistake?
- Reject the profile picture I uploaded to get a new OV chipcard?\(^1\)
- ...
Explainable Machine Learning

The Need for Explanations:

Why did the machine learning system
 ▶ Classify my company as high risk for money laundering?
 ▶ Reject my bank loan?
 ▶ Give a certain medical diagnosis?
 ▶ Make a certain mistake?
 ▶ Reject the profile picture I uploaded to get a new OV chipcard?¹
 ▶ . . .

Information-Theoretic Constraints:

 ▶ Cannot communicate millions of parameters!
 ▶ Can communicate only some relevant aspects and/or need high-level concepts in common with user

¹Personal experience
Local Post-hoc Explanations

\mathbf{x}

$f(x) = 0$

-1

+1

Input \mathbf{x} to be explained

- Local: only explain the part of f that is (most) relevant for \mathbf{x}.
- Post-hoc: ignore explainability concerns when estimating f.
Local Explanations via Attributions

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_{d-1} \\
 x_d
\end{bmatrix}
\]

\[
\begin{bmatrix}
 \phi_f(x)_1 \\
 \phi_f(x)_2 \\
 \vdots \\
 \phi_f(x)_{d-1} \\
 \phi_f(x)_d
\end{bmatrix}
= \phi_f(x)
\]

\(\phi_f(x) \in \mathbb{R}^d\) attributes a weight to each feature, which explains how important the feature is for the classification of \(x\) by \(f\).
Local Explanations via Attributions

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_{d-1} \\
 x_d
\end{bmatrix}
- +
\begin{bmatrix}
 \varphi_f(x)_1 \\
 \varphi_f(x)_2 \\
 \vdots \\
 \varphi_f(x)_{d-1} \\
 \varphi_f(x)_d
\end{bmatrix}
= \varphi_f(x)
\]

\(\phi_f(x) \in \mathbb{R}^d\) attributes a weight to each feature, which explains how important the feature is for the classification of \(x\) by \(f\).

Example: low \(d\), linear \(f\)

\[
f(x) = \theta_0 + \sum_{i=1}^{d} \theta_i x_i
\]

\(\phi_f(x)_i = \theta_i\) could be coefficient of \(x_i\)

▶ NB This example is too simple! In general \(\phi_f(x)\) will depend on \(x\). But many methods can be viewed as local linearizations of \(f\).
Examples of Local Attribution Methods
Example Attribution Method: LIME

LIME: Do local linear approximation of \(f \) near \(x \) (optionally in dimensionality reduced space), and report coefficients

LIME for tabular data:\(^2\)

(classifying edibility of mushrooms)

\(^2\)Image source: https://github.com/marcotcr/lime
Example Attribution Method: LIME

LIME: Do local linear approximation of f near x (optionally in dimensionality reduced space), and report coefficients

LIME for text:\(^2\)

\(^2\)Image source: https://towardsdatascience.com/what-makes-your-question-insincere-in-quora-26ee7658b010
Example Attribution Method: LIME

LIME: Do local linear approximation of f near x (optionally in dimensionality reduced space), and report coefficients

LIME for images:

(a) Original Image (b) Explaining *Electric guitar* (c) Explaining *Acoustic guitar* (d) Explaining *Labrador*

2Image source: [Ribeiro et al., 2016]
Example: Gradient-based Explanations

Various gradient methods\(^3\)

- Vanilla gradient: \(\phi_f(x) = \nabla f(x)\)
- SmoothGrad: \(\phi_f(x) = \mathbb{E}_{Z \sim \mathcal{N}(x, \Sigma)}[\nabla f(Z)]\)
- ...

\(^3\)Image source: [Smilkov et al., 2017]
Example: Counterfactual Explanations

“If you would have had an income of €40 000 instead of €35 000, your loan request would have been approved.”

Counterfactual explanation: \(\tilde{x} = \arg \min_{x': \text{sign}(f(x')) \neq \text{sign}(f(x))} \text{dist}(x', x) \)
Example: Counterfactual Explanations

“If you would have had an income of €40 000 instead of €35 000, your loan request would have been approved.”

Counterfactual explanation: \(\tilde{x} = \arg \min_{x'} \text{dist}(x', x) \)

Viewed as attribution method: \(\phi_f(x) = \tilde{x} - x \)
How Do We Evaluate Explanations?

- When are they good? Are some better than others?
- What is even the goal they are trying to achieve?
“If you change your current income of €35 000 to €40 000, then your loan request will be approved.”

Attribution methods provide recourse if they tell the user how to change their features such that f takes their desired value.
Recourse Sensitivity

- Our definition: weakest possible requirement for providing recourse.

\[f(x) = 0 \]

1. Assume user can change their features by at most some \(\delta > 0 \).

\(\phi f(x) \) can point in any direction that provides recourse within distance \(\delta \), and length does not matter as long as it is > 0.

3. If no direction provides recourse, then \(\phi f(x) \) can be arbitrary.
Recourse Sensitivity

- Our definition: weakest possible requirement for providing recourse.

1. Assume user can change their features by at most some $\delta > 0$
Recourse Sensitivity

- Our definition: weakest possible requirement for providing recourse.

1. Assume user can change their features by at most some $\delta > 0$
2. $\phi_f(x)$ can point in any direction that provides recourse within distance δ, and length does not matter as long as it is > 0.
3. If no direction provides recourse, then $\phi_f(x)$ can be arbitrary.
Recourse Sensitivity: Example

Profile picture is accepted if contrast between profile and background is large enough:

(a) Accepted profile picture

(b) Rejected profile picture
Recourse Sensitivity: Example

Profile picture is accepted if contrast between profile and background is large enough:

(a) Accepted profile picture

(b) Rejected profile picture
Recourse Sensitivity: Example

Profile picture is accepted if contrast between profile and background is large enough:

(a) Accepted profile picture
(b) Rejected profile picture

Provides Recourse!
Provides No Recourse!
Profile Picture Gradient LIME manual LIME auto SHAP
Robustness of Explanations

Compare:

1. “If you change your current income of €35 000 to €40 000, then your loan request will be approved.”

2. “If you change your current income of €35 001 to €45 000, then your loan request will be approved.”

Minor changes in x should not cause big changes in explanations!
Robustness of Explanations

Compare:

1. “If you change your current income of €35 000 to €40 000, then your loan request will be approved.”
2. “If you change your current income of €35 001 to €45 000, then your loan request will be approved.”

Minor changes in x should not cause big changes in explanations!

Robustness: If f is continuous, then ϕ_f should also be continuous. (e.g. survey of recourse by [Karimi et al., 2021])
Impossibility:

No Single Method Can Be Both Recourse Sensitive and Robust
Suppose the user wants to switch the class in a binary classification setting.

Theorem (For Binary Classification)

For any $\delta > 0$ there exists a continuous function f such that no attribution method ϕ_f can be both recourse sensitive and continuous.
Proof Sketch

\[L = \{ x : \text{recourse possible by moving at most } \delta \text{ left} \} \]
\[R = \{ x : \text{recourse possible by moving at most } \delta \text{ right} \} \]
Proof Sketch

Recourse sensitivity implies:

\[\phi_f(x) \begin{cases} < 0 & \text{for } x \in L \setminus R \\ > 0 & \text{for } x \in R \setminus L \\ \neq 0 & \text{for } x \in L \cap R \end{cases} \]
Proof Sketch

\[L = \{ x : \text{recourse possible by moving at most } \delta \text{ left} \} \]
\[R = \{ x : \text{recourse possible by moving at most } \delta \text{ right} \} \]

Recourse sensitivity implies:

\[\phi_f(x) \begin{cases} < 0 & \text{for } x \in L \setminus R \\ > 0 & \text{for } x \in R \setminus L \\ \neq 0 & \text{for } x \in L \cap R \end{cases} \]

But this contradicts continuity!
(by the mean-value theorem)

Can embed 1D example in higher dimensions as well.
Characterizing Impossible Functions in 1D

\[L = \{ x : \text{recourse possible by moving at most } \delta \text{ left} \} \]
\[R = \{ x : \text{recourse possible by moving at most } \delta \text{ right} \} \]

Theorem

Let \(d = 1, \delta > 0 \). Then there exists a **recourse sensitive** and **continuous** attribution method \(\phi_f \) for a function \(f \) if and only if there exist \(\tilde{L} \subseteq L \) and \(\tilde{R} \subseteq R \) such that

1. \(\tilde{L} \cup \tilde{R} = L \cup R \) and
2. \(\tilde{L} \) and \(\tilde{R} \) are **separated**.

Sets \(A \) and \(B \) are separated if \(\text{cl}(A) \cap B = \emptyset \) and \(A \cap \text{cl}(B) = \emptyset \).
Characterizing Impossible Functions in 1D

\[\begin{align*}
 L &= \{x : \text{recourse possible by moving at most } \delta \text{ left}\} \\
 R &= \{x : \text{recourse possible by moving at most } \delta \text{ right}\}
\end{align*}\]

Theorem

\[\begin{align*}
 \text{Let } d = 1, \delta > 0. \text{ Then there exists a \textit{recourse sensitive} and } \textit{continuous} \text{ attribution method } \phi_f \text{ for a function } f \text{ if and only if there exist } \tilde{L} \subseteq L \text{ and } \tilde{R} \subseteq R \text{ such that} \\
 1. \tilde{L} \cup \tilde{R} = L \cup R \text{ and} \\
 2. \tilde{L} \text{ and } \tilde{R} \text{ are \textit{separated}.}
\end{align*}\]

Sets \(A\) and \(B\) are separated if \(\text{cl}(A) \cap B = \emptyset\) and \(A \cap \text{cl}(B) = \emptyset\).

Proof Ideas:

- \(\tilde{L}\) and \(\tilde{R}\) determine the sign of \(\phi_f\) on \(L \cup R\)
- Separatedness gives just enough room for \(\phi_f\) to cross through 0 in between \(\tilde{L}\) and \(\tilde{R}\)
Utility Function:
User with input x is satisfied with point y if $u_f(x, y) \geq \tau$ for some $\tau > 0$.

Examples:
- Classification: $u_f(x, y) := |\text{sign}(f(y)) - \text{sign}(f(x))| \geq 2$
- Absolute increase: $u_f(x, y) := f(y) - f(x) \geq \tau$
- Relative increase by $p \times 100\%$: $u_f(x, y) := \frac{f(y)}{f(x)} \geq 1 + p$
Impossibility for General Utility Functions

Theorem (For General Utility Functions)

Let $\delta, \tau > 0$. Assume that

1. $u_f(x, y) = \tilde{u}(f(x), f(y))$ depends on x, y only via f;

2. There exist $z_1, z_2 \in \mathbb{R}$ for which $\tilde{u}(z_1, z_2) \geq \tau$ and $\tilde{u}(z_1, z_1) < \tau$.

Then there exists a continuous function f such that no attribution method ϕ_f can be both recourse sensitive and robust.
Theorem (For General Utility Functions)

Let $\delta, \tau > 0$. Assume that

1. $u_f(x, y) = \tilde{u}(f(x), f(y))$ depends on x, y only via f;
2. There exist $z_1, z_2 \in \mathbb{R}$ for which $\tilde{u}(z_1, z_2) \geq \tau$ and $\tilde{u}(z_1, z_1) < \tau$.

Then there exists a continuous function f such that no attribution method ϕ_f can be both recourse sensitive and robust.

Proof Idea:

- Like impossibility for binary classification with this f:

```
L --------- \frac{7\delta}{8} --------- \frac{3\delta}{4} --------- \frac{3\delta}{4} --------- R
```

\[\frac{\frac{7\delta}{8}}{L} \quad \frac{\frac{3\delta}{4}}{\frac{3\delta}{4}} \quad \frac{R}{R} \]
Conclusion

Summary:

- Exist f for which recourse sensitivity + robustness is **impossible**, for classification and other utility functions
- Exact **characterisation** of impossible f, but only for 1D
- Further extensions in the paper:
 - Include constraints on user actions
 - Characterisation in arbitrary dimensions when user can only change a single feature

Discussion:

Is impossibility a really bad problem?

Not, but need to refine formal goals of explainability for recourse. E.g.:

- Accept that robustness sometimes fails
- Set-valued explanations
- Randomized explanations

...
Conclusion

Summary:
- Exist f for which recourse sensitivity + robustness is impossible, for classification and other utility functions
- Exact characterisation of impossible f, but only for 1D
- Further extensions in the paper:
 - Include constraints on user actions
 - Characterisation in arbitrary dimensions when user can only change a single feature

Discussion:
Is impossibility a really bad problem?
Not, but need to refine formal goals of explainability for recourse. E.g.:
- Accept that robustness sometimes fails
- Set-valued explanations
- Randomized explanations
- ...

Other references: