An Introduction to
Adaptive Online Learning

Universiteit

Tim van Erven Leiden

Joint work with: Wouter Koolen, Peter Griinwald

ABN AMRO
October 18, 2018



Example: Sequential Prediction for Football Games

Precursor to modern football in China,
Han Dynasty (206 BC — 220 AD)

v
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Before every match t in the English Premier
League, my PhD student Dirk van der Hoeven
wants to predict the goal difference Y;

Given feature vector X; € R, he may predict
Y; = w] X; with a linear model

After the match: observe Y;

Measure loss by ¢(w;) = (Y — Y;)? and
improve parameter estimates: w; — W41



Example: Sequential Prediction for Football Games

» Before every match t in the English Premier
League, my PhD student Dirk van der Hoeven
wants to predict the goal difference Y;

> Given feature vector X; € R?, he may predict
Y; = w] X; with a linear model

» After the match: observe Y;

» Measure loss by ¢:(w;) = (Y — ¥:)? and
improve parameter estimates: w; — W41

Precursor to modern football in China,
Han Dynasty (206 BC — 220 AD)

Goal: Predict almost as well as the best possible parameters u:

Regrety = Zﬁr(wt) - Zﬂt(u)

t=1 t=1



General Framework: Online Convex Optimization

1: fort=1,2,..., T do

2:  Learner estimates w; from convex U C R¢

3:  Nature reveals convex loss function ¢; : U — R
4:  Learner incurs loss £;(w;)

5: end for

Goal: Predict almost as well as the best possible parameters w:

T T
Regrety = Zét(wt) - Zét(u)
t=1

t=1

Learner tries to minimize regret Nature tries to regret



Online Learning Example: Electricity Forecasting

Every day t an electricity company needs to predict how much
electricity Y; is needed the next day [Devaine et al., 2013]

Approach:

» Given side-information (day lengths,
temperature, wind, cloud cover, ...)

» d = 24 different prediction models Y}, ... V¢
constructed by different teams in the company

» Want to learn best combination of predictions:
Yt = Wt1 Ytl +...+ Wt d Ytd




Online Learning Example: Electricity Forecasting

Every day t an electricity company needs to predict how much
electricity Y; is needed the next day [Devaine et al., 2013]

Approach:
» Given side-information (day lengths,
temperature, wind, cloud cover, ...)

» d = 24 different prediction models Y}, ... V¢
constructed by different teams in the company

» Want to learn best combination of predictions:
Yt = Wt1 Ytl +...+ Wt d Ytd

Online Learning Formulation:
Fort=1,2,...,T:

> Learner chooses w; = (Wt 1,..., Wi q)

» Nature chooses loss function
Ce(wiyoooyowg) = (Yo —ma Y — o — wy YE)?

> Learner's loss is ¢;(w;)



Software

High-quality Open Source Software:

» Vowpal Wabbit (Yahoo, Microsoft):
https://github.com/VowpalWabbit/vowpal_wabbit/wiki

» Built-in in standard software to train deep neural networks
(TensorFlow (Google), PyTorch, etc.)

Example: Web Spam Detection

> 24 GB of data: websites, trigram features x
per website

> Goal: classify website as regular (y = +1) or fraudulent (y = —1)
> Logistic loss: f;(w) = log(1 + e %™ ®t) on t-th website
» Vowpal Wabbit:

> Training: 5 passes over 270000 websites in 4m1l1ls
> Accuracy: 0.5% error on test set with 80 000 websites
> Default algorithm: online gradient descent + bells and whistles


https://github.com/VowpalWabbit/vowpal_wabbit/wiki

Standard Methods

Methods: Efficient computations using only gradient g; = V £;(w;)

Wy = W — 1),G¢ (online gradient descent)

Wiyl = Wr — )X t41G¢ (online Newton Step)

where ¥¢p1 = (el +2123°L 1 gsg]) L.

» Big obstacle (in theory and practice): how to tune 7,?
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Prediction Error

Day 0
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Prediction Error

Day 1
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Prediction Error

Day 1
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Prediction Error

Online Gradient Descent
Day 1

Move in direction of steepest descent



Online Gradient Descent
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Online Gradient Descent
Day 2

f2(w2)

Prediction Error

Step size determined by



Online Gradient Descent
Day 2
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Online Gradient Descent
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Example: Deep Neural Networks

Input

\()m] ut

Self-driving cars
Class of non-convex functions parametrized by matrices

w:(Al,...,Am):

hw(w) =AnOm—1Am—1-- UlAla:y

where 0;(z) = max{0, z} applied component-wise to vectors.



Example: Deep Neural Networks
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Machine translation
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Self-driving cars

Trained by learning parameters online (non-convex task):

» Millions of images: too many to process all at once

» Process one image at a time using online learning algorithms:
> Online gradient descent (OGD)
» AdaGrad = OGD with separate 7; per dimension
> Adam = AdaGrad + extensions for deep learning



Mathematical Theory

Guaranteed Bounds on the Regret (ounded domain and gradientsy [Hazan, 2016]:

Convex /¢
Strongly convex /;

Exp-concave /¢,

VT
InT

dinT

OGD with n; \/LE
OGD with n; o %

ONS with n < 1

» Strongly convex: second derivative at least a > 0, implies exp-concave

> Exp-concave: e~ %% concave

Satisfied by log loss, logistic loss, squared loss, but not hinge loss



Mathematical Theory

Guaranteed Bounds on the Regret (ounded domain and gradientsy [Hazan, 2016]:

Convex £ VT | OGD with Nt X \/LE
Strongly convex £; | InT | OGD with n, o< 1

Exp-concave ¢; | dIn T | ONS with n < 1

Different method in each case. (Requires sophisticated users.)
Theoretical tuning of n; very conservative

What if curvature varies between rounds?

In many applications data are stochastic (i.i.d.) Should be easier
than worst case. . .

vV vyYye.y



Guaranteed Bounds on the Regret (ounded domain and gradientsy [Hazan, 2016]:

vV vyYye.y

Mathematical Theory

Convex /¢

Strongly convex £,

Exp-concave /;

VT
InT

dinT

OGD with 7 \/LE

OGD with n; %

ONS with n < 1

Different method in each case. (Requires sophisticated users.)

Theoretical tuning of 7, very conservative
What if curvature varies between rounds?
In many applications data are stochastic (i.i.d.) Should be easier

than worst case. ..

Difficulty: All existing methods learn
overhead of learning best

at too slow rate [HP2005] so

ruins potential benefits



MetaGrad: Multiple Eta Gradient Algorithm
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MetaGrad: Multiple Eta Gradient Algorithm
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MetaGrad: Multiple Eta Gradient Algorithm
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MetaGrad: Multiple Eta G =; « (! + 247gg") ?
w; — w; — NiX;g(l+2nir;)

771 7]2 773 = Quasi Newton update

~

Zi TiTiW;j
Z,' ini

2.2
i e T g = Vf(w)
where r; = (w; — w)"g

w =

Tilted Exponential Weights
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MetaGrad: Provable Adaptive Fast Rates

Theorem (Van Erven, Koolen, 2016)
MetaGrad'’s Regret’} is bounded by

T VTInInT
Regrety < Z(wt —u)Tg: X
=1 VVidinT +dInT

T

vy = Z((U —w)Tg:)".

t=1

where

» By convexity, £;(w;) — {:(u) < (wy — u)Tg;.

» Optimal learning rate /) depends on V¢, but w unknown!
Crucial to learn best learning rate from data!
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Consequences

1. Non-stochastic adaptation:

Convex 4; | VTInInT

Exp-concave /; dinT

Fixed convex ¢; = ¢ dinT

11/17



Consequences

1. Non-stochastic adaptation:

Convex /;
Exp-concave /¢,

Fixed convex ¢; = /¢

VTIninT
dinT
dinT

2. Stochastic without curvature

Suppose ¢; i.i.d. with stochastic optimum u* = arg min,, ¢, E¢[¢(u)].

Then expected regret E[Regret% ]:

Absolute loss* £:(w) = |w — X¢|
Hinge loss max{0,1 — Y:(w, X;)}

InT
dinT

(BdIn T)Y/C=A) T-5)/(2=5)

*Conditions apply

11/17



Related Work: Adaptivity to Stochastic Data in

Batch Classification [Tsybakov, 2004]

1 1
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X X X
easy moderate hard

g=1 B=3 p=0



Related Work: Adaptivity to Stochastic Data in
Batch Classification [Tsybakov, 2004]

1 1 1

0.5 0.5 0.5 /

X X X
easy moderate hard

B=1 5=1 5=0

Definition ((B, )-Bernstein Condition)

Losses are i.i.d. and
E ({(w) — l(u*))* < B(E [((w) — {(u*)] )B for all w,
where u* = arg min,, E[¢(w)] minimizes the expected loss.

12/17



Bernstein Condition for Online Learning
Suppose ¢; i.i.d. with stochastic optimum u* = arg minIlE[E(u)].
ucl

Standard Bernstein condition:

E (¢(w) — (u*))? < B(E[{(w) — ((u?)])”  forall w e U.

13/17



Bernstein Condition for Online Learning
Suppose ¢; i.i.d. with stochastic optimum u* = arg minIlEjI[é(u)].
ucl

E (¢(w) — (u*))? < B(E[{(w) — ((u?)])”  forall w e U.

Replace by
> Apply with (u) = (u, V £(w)) instead of /!
» By convexity, /(w) — £(u*) < {(w) — (u*).

E ((w — u*)TV {(w))? < B(E[(w —u*)TV {(w)] )’3 for all w € U.
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2Amax(E[X X T])

Hinge loss (domain, gradients bounded by 1): 8 =1, B = oxa sl
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Bernstein Condition for Online Learning
Suppose ¢; i.i.d. with stochastic optimum u* = arg minlgl[é(u)].
ucl

E (¢(w) — (u*))? < B(E[{(w) — ((u?)])”  forall w e U.

Replace by
> Apply with (u) = (u, V £(w)) instead of /!
» By convexity, /(w) — £(u*) < {(w) — (u*).

E((w — u*)TV f(w))? < B(E[(w — u*)TV f(w)] )’ for all w € U.

2Amax(E[X X T])

Hinge loss (domain, gradients bounded by 1): 8 =1, B = oxa sl

Theorem (Koolen, Griinwald, Van Erven, 2016)

E[Regret’ | < (Bd In T)Y/ =5 7(=5)/(2=5)
Regret® < (BdIn T —Ing)/C=7) 70=0)/C=6) "y p >1_5
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MetaGrad Simulation Experiments

600 _
600 —— AdaGrad _ I\A/IiTSCT‘::d
—— MetaGrad 500
500
400 - 400
. o
° >
g; 300 ® 300
200 200
100 100
— 0 - L
0
2 4 6 8 10 2 ‘ T ° ° 140
x 10
T x 10* Stochastic Online: £4(u) = |u — X¢|

Offline: £¢(u) = |u — 1/4] where Xp = i% i.id. w.p. 0.4 and 0.6.

» MetaGrad: O(In T) regret, AdaGrad: O(+/T), match bounds
» Functions neither strongly convex nor smooth

» Caveat: comparison more complicated for higher dimensions, unless
we run a separate copy of MetaGrad per dimension, like the diagonal
version of AdaGrad runs GD per dimension
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MetaGrad Football Experiments

Regression results square loss I2ball

20000 —— Metagrad full
17500 —— Metagrad diag
—— Adagrad diag

15000
12500
5 Dirk van der Hoeven
& 10000 (my PhD student)
o<
7500
5000

2500

0 1000 2000 3000 4000 5000 6000 = -
T Raphaél Deswarte
(visiting PhD student)
> Predict difference in goals in 6000 football games in English Premier
League (Aug 2000-May 2017).
» Square loss on Euclidean ball

» 37 features: running average of goals, shots on goal, shots over
m=1,...,10 previous games; multiple ELO-like models; intercept.

15/17



Summary

Online Learning:

> Very fast algorithms that process one data point at a time
> Useful for:

> Time-series data: football games, electricity forecasting, ...
> Big data: web spam detection, deep neural networks, ...

> Big challenge: how to automatically adapt to learn optimally on
different types of data?

MetaGrad Adaptive Online Learning:

» Consider simultaneously
> Learn ) from the data, at very fast rate (pay only Inln T)

» New adaptive variance bound that applies fast learning in
and new cases with stochastic data

16
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