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Explainable Machine Learning

The Need for Explanations:

Why did the machine learning system

I Classify my company as high risk for money laundering?

I Reject my bank loan?

I Predict this patient can safely leave the intensive care?

I Mistake a picture of a husky for a wolf?

I Reject the profile picture I uploaded to get a public transport card?1

I . . .

Information-Theoretic Constraints:

I Cannot communicate millions of parameters!

I Can communicate only some relevant aspects and/or need
high-level concepts in common with user

1Personal experience
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Booming Literature
4794 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

TABLE I

LIST OF JOURNAL ARTICLES ARRANGED ACCORDING TO THE INTERPRETABILITY METHODS USED, HOW INTERPRETABILITY IS PRESENTED OR THE
SUGGESTED MEANS OF INTERPRETABILITY. THE TABULATION PROVIDES A NONEXHAUSTIVE OVERVIEW OF INTERPRETABILITY METHODS,

PLACING SOME DERIVATIVE METHODS UNDER THE UMBRELLA OF THE MAIN METHODS THEY DERIVE FROM. HSI: HUMAN STUDY ON
INTERPRETABILITY!MEANS THERE IS HUMAN STUDY DESIGNED TO VERIFY IF THE SUGGESTED METHODS ARE INTERPRETABLE

BY THE HUMAN SUBJECT. ANN: !MEANS EXPLICITLY INTRODUCES NEW ARTIFICIAL NN ARCHITECTURE, MODIFIES
EXISTING NETWORKS OR PERFORMS TESTS ON NNs

reside within these algorithms. We also find that many journal
articles in the ML and AI community are algorithm-centric.
They often assume that the algorithms used are obviously
interpretable without conducting human subject tests to verify
their interpretability (see column HSI of Tables I and II). It is
noted that assuming that a model is obviously interpretable
is not necessarily wrong, and, in some cases human tests
might be irrelevant (for example, predefined models based on
commonly accepted knowledge specific to the content-subject
may be considered interpretable without human subject tests).
In the tables, we also include a column to indicate whether
the interpretability method applies for artificial NN, since the
issue of interpretability is recently gathering attention due to
its blackbox nature.

We will not attempt to cover all related works many
of which are already presented in the research articles and
survey we cite [1], [2], [15]–[30]. We extend the so-called

integrated interpretability [16] by including considerations for
subject-content-dependent models. Compared to [17], we also
overview the mathematical formulation of common or pop-
ular methods, revealing the great variety of approaches to
interpretability. Our categorization draws a starker borderline
between the different views of interpretability that seem to be
difficult to reconcile. In a sense, our survey is more suitable for
technically oriented readers due to some mathematical details,
although casual readers may find useful references for relevant
popular items, from which they may develop interests in this
young research field. Conversely, algorithm users that need
interpretability in their work might develop an inclination to
understand what is previously hidden in the thick veil of math-
ematical formulation, which might ironically undermine relia-
bility and interpretability. Clinicians and medical practitioners
already having some familiarity with mathematical terms
may get a glimpse on how some proposed interpretability

(Tjoa and Guan, 2021)

TJOA AND GUAN: SURVEY ON XAI: TOWARD MEDICAL XAI 4795

TABLE II

(CONTINUED FROM TABLE I) LIST OF JOURNAL ARTICLES ARRANGED ACCORDING TO THE
INTERPRETABILITY METHODS USED, HOW INTERPRETABILITY IS PRESENTED OR

THE SUGGESTED MEANS OF INTERPRETABILITY

methods might be risky and unreliable. The survey [30] views
interpretability in terms of extraction of relational knowledge,
more specifically, by scrutinizing the methods under neural-
symbolic cycle. It presents the framework as a subcategory
within the interpretability literature. We include it under verbal
interpretability, though the framework does demonstrate that
methods in other categories can be perceived under verbal
interpretability as well. The extensive survey [18] provides a
large list of researches categorized under transparent model
and models requiring post hoc analysis with multiple subcat-
egories. Our survey, on the other hand, aims to overview the
state of interpretable ML as applied to the medical field.

This article is arranged as the following. Section II intro-
duces generic types of interpretability and their subtypes.
In each section, where applicable, we provide challenges and
future prospects related to the category. Section III applies the
categorization of interpretabilities in Section II to medical field
and lists a few risks of machine interpretability in the medical
field. Before we proceed, it is also imperative to point out that
the issue of accountability and interpretability has spawned
discussions and recommendations [31]–[33], and even entered
the sphere of ethics and law enforcements [34], engendering
movements to protect the society from possible misuses and
harms in the wake of the increasing use of AI.

(Tjoa and Guan, 2021)
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deployment of ML algorithms, especially in high stake domains, such as medical diagnosis,
criminal justice, financial decision-making, and other regulated safety critical domains,
requires verification and testing for plausibility by domain experts not only for safety but
for legal reasons [8]. Users also want to understand reasons behind specific decisions based
on ML models. Such requirements result in high societal and ethical demands to provide
explanations for such ML systems. ML explanations are becoming indispensable to inter-
pret black box results and to allow users to gain insights into the system’s decision-making
process, which is a key component in fostering trust and confidence in ML systems [9–11].

The issue of ML explanation has experienced a significant surge in interest since the
launch of the USA’s Defense Advanced Research Projects Agency (DARPA) initiative [12],
from the international research community [13–16] and to various application domains in
recent years [17–19], which can be demonstrated by the enormous and quickly growing
research publications on ML explanations, as shown in Figure 1. Various approaches for
ML explanations are proposed from different perspectives, such as algorithmic approaches
and visual analytics approaches. However, this was at a time where Deep Learning was
not used very much [20].

Figure 1. The number of research publications on ML explanations (based on Scopus.com until
December 2020).

However, most of the work in the ML explanation research field focuses on creating
new methods and techniques to improve explainability in prediction tasks and try to
minimise the decrease in the prediction accuracy [17]. While various explanations have
been explored, it remains unclear which way is the most appropriate explanation for a
specific ML solution in a given context on a given task for a given domain expert.

Consequently, there is a huge need for evaluations to quantify the quality of explana-
tory methods as well as approaches to assess and choose the most appropriate explanation
in practices. As a result, existing research has been starting attempts to formulate some
approaches for explainability assessments. However, there are no agreed metrics for the
quality of explanation methods [17], and comparisons are difficult. One of reasons behind
the unsolved problem is that explainability is an inherently very subjective concept, and the
perceived quality of an explanation is contextual and dependent on users, the explanation
itself, as well as the type of information that users are interested in. It is hard to formalise
it [17,21]. Explanation is also a domain-specific note, and there cannot be an all-purpose
explanation [22], and different types of explanations might be useful. For example, one
might want to personally know the main reasons why a mortgage was declined by the
bank, but, in a legal scenario, a full explanation with a list of all factors might be required.

This paper takes a stand on what metrics are available to assess the quality of ML
explanations and how to assess the quality of ML explanations effectively in practical
applications. The aim of the paper is to thoroughly review the existing scientific literature
to categorise approaches that are available for assessing the quality of ML explanations
and suggest future research directions. This review focuses on metrics for evaluating
ML explanations, including both human-centred subjective evaluations and quantitative
objective evaluations that are not fully investigated in the current review papers.

(Zhou et al., 2021)

A survey of algorithmic recourse:
contrastive explanations and consequential recommendations

Table 1: An overview of recourse algorithms for consequential decision-making settings is presented. Ordered chronologically, we summarize the goal,
formulation, solution, and properties of each algorithm. Symbols are used to indicate supported settings in the experimental section of the paper ( ), settings
that are natural extensions of the presented algorithm1 ( ), settings that are partially supported2 ( ), and settings that are not supported ( ). The models cover
a broad range of tree-based (TB), kernel-based (KB), di�erentiable (DF), or other (OT) types. Actionability contraints (unconditional or conditional), plausibility
constraints (domain-, density-, and prototypical-consistency), and additional constraints (diversity, sprasity) are also explored. While the primary datatypes used
in consequential settings are tabular � (involving a mix of numeric, binary, categorical, and ordinal variables), we also include additional works that generate
recourse for non-tabular (images � and document �) datasets. Furthermore, papers that present analysis of such properties as optimality (opt.), coverage (cov.),
and run-time complexity (rtm.) are speci�ed in the table. Finally, we make note of those papers that provide open-source implementations of their algorithm.

Executive summary: the vast majority of the recourse literature has focused on generating contrastive explanations rather than consequential recom-
mendations (c.f., §2). Di�erentiable models are the most widely supported class of models, and many constraints are only sparsely supported (c.f., §3). All tools
generate solutions that to some extent trade-o� desirable requirements, e.g., optimality, perfect coverage, e�cient run-time, and access (c.f., §4), resulting in a
lack of unifying comparison (c.f., §5). This table does not aim at serving to rank or be a qualitatively comparison of surveyed methods, and one has to exercise
caution when comparing di�erent setups. As a systematic organization of knowledge, we believe the table may be useful to practitioners looking for methods
that satisfy certain properties, and useful for researchers that want to identify open problems and methods to further develop.

Algorithm
Formulation Solution

Model Actionability Plausibility Extra Data types Tools Access Properties Code
TB KB DF OT uncond. cond. dom. dens. proto. diver. spar. � � � opt. cov. rtm.

(2014.03) SEDC [129] heuristic query
(2015.08) OAE [51] ILP white-box
(2016.05) HCLS [110, 112] grad opt/heuristic gradient/query
(2017.06) Feature Tweaking [186] heuristic white-box
(2017.11) CF Expl. [196] grad opt gradient
(2017.12) Growing Spheres [114] heuristic query
(2018.02) CEM [55] FISTA class prob.
(2018.02) POLARIS [209] heuristic gradient
(2018.05) LORE [80] gen alg + heuristic query
(2018.06) Local Foil Trees [190] heuristic query
(2018.09) Actionable Recourse [189] ILP white-box
(2018.11) Weighted CFs [77] heuristic query
(2019.01) E�cient Search [175] MILP white-box
(2019.04) CF Visual Expl. [76] greedy search white-box
(2019.05) MACE [99] SAT white-box
(2019.05) DiCE [145] grad opt gradient
(2019.05) CERTIFAI [179] gen alg query
(2019.06) MACEM [56] FISTA query
(2019.06) Expl. using SHAP [165] heuristic query
(2019.07) Nearest Observable [201] brute force dataset
(2019.07) Guided Prototypes [191] grad opt/FISTA gradient/query
(2019.07) REVISE [95] grad opt gradient
(2019.08) CLEAR [202] heuristic query
(2019.08) MC-BRP [123] heuristic query
(2019.09) FACE [162] graph + heuristic query
(2019.09) Equalizing Recourse [83] ILP/heuristic white-box/query
(2019.10) Action Sequences [163] program synthesis class prob.
(2019.10) C-CHVAE [156] grad opt + heuristic query + gradient
(2019.11) FOCUS [124] grad opt + heuristic white-box
(2019.12) Model-based CFs [127] grad opt gradient
(2019.12) LIME-C/SHAP-C [164] heuristic query
(2019.12) EMAP [41] grad opt dataset/query
(2019.12) PRINCE [71] graph + heuristic query
(2019.12) LowProFool [18] grad opt gradient
(2020.01) ABELE [79] gen alg + heuristic query + data
(2020.01) SHAP-based CFs [66] heuristic query
(2020.02) CEML [11–13] grad opt/heuristic gradient/query
(2020.02) MINT [100] SAT white-box
(2020.03) ViCE [74] heuristic query
(2020.03) Plausible CFs [22] grad opt + gen alg dataset
(2020.04) SEDC-T [193] heuristic query
(2020.04) MOC [52] gen alg query
(2020.04) SCOUT [199] grad opt gradient
(2020.04) ASP-based CFs [28] answer-set prog. query
(2020.05) CBR-based CFs [103] heuristic query + data
(2020.06) Survival Model CFs [106] gen alg query
(2020.06) Probabilistic Recourse [101] grad opt/brute force gradient/query
(2020.06) C-CHVAE [155] grad opt gradient
(2020.07) FRACE [210] grad opt gradient
(2020.07) DACE [96] MILP white-box
(2020.07) CRUDS [60] grad opt gradient/data
(2020.07) Gradient Boosted CFs [5] heuristic data
(2020.08) Gradual Construction [97] heuristic class prob.
(2020.08) DECE [44] grad opt gradient
(2020.08) Time Series CFs [16] heuristic query
(2020.08) PermuteAttack [87] gen alg query
(2020.10) Fair Causal Recourse [195] grad opt/brute force gradient/query
(2020.10) Recourse Summaries [167] itemset mining alg query
(2020.10) Strategic Recourse [43] Nelder-Mead query
(2020.11) PARE [172] grad opt + heuristic query

a E.g., a model-agnostic query-based algorithm supports all models, even if the experiments were only conducted on a subset of those presented in the table.
b E.g., an algorithm may support numeric and binary variables, but not categorical.

(Karimi et al., 2021)
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Machine Learning: Binary Classification

s
x1

x2

f (x) = 0

-1

+1

I Goal: classify an input x = (x1, . . . , xd) ∈ Rd as class −1 or class +1

I Usually by thresholding a real-valued classifier f : Rd → R,
e.g. predicted class is sign(f (x))

I Classifier f obtained by minimizing error on training data

5 / 47



Local Post-hoc Explanations

s
x1

x2

f (x) = 0

-1

+1

input x to
be explained

I Local: only explain the part of f that is (most) relevant for x .

I Post-hoc: ignore explainability concerns when estimating f .
6 / 47



Local Explanations via Attributions




x1

x2

...
xd−1

xd







ϕf (x)1

ϕf (x)2

...
ϕf (x)d−1

ϕf (x)d




= ϕf (x)

− +

φf (x) ∈ Rd attributes a weight to each feature, which explains
how important the feature is for the classification of x by f .

Example: low d , linear f

f (x) = θ0 +
d∑

i=1

θixi

φf (x)i = θi could be coefficient of xi

I NB This example is too simple! In general φf (x) will depend on x .
But many methods can be viewed as local linearizations of f .
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Example: Gradient-based Explanations

Various gradient methods2

Sharper sensitivity maps: removing noise by adding noise

Figure 4. Effect of sample size on the estimated gradient for inception. 10% noise was applied to each image.

Figure 5. Qualitative evaluation of different methods. First three (last three) rows show examples where applying SMOOTHGRAD had
high (low) impact on the quality of sensitivity map.

I Vanilla gradient: φf (x) = ∇f (x)

I SmoothGrad: φf (x) = EZ∼N (x,Σ)[∇f (Z )] (Smilkov et al., 2017)

I . . .

2Image source: (Smilkov et al., 2017)
8 / 47



Example: LIME

LIME (Ribeiro, Singh, and Guestrin, 2016): Do local linear approximation of f
near x (optionally in dimensionality reduced space), and report
coefficients

LIME for tabular data:3

(classifying edibility of mushrooms)

3Image source: https://github.com/marcotcr/lime
9 / 47
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Example: LIME

LIME (Ribeiro, Singh, and Guestrin, 2016): Do local linear approximation of f
near x (optionally in dimensionality reduced space), and report
coefficients

LIME for text:3

3Image source: https://towardsdatascience.com/

what-makes-your-question-insincere-in-quora-26ee7658b010
9 / 47
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Example: LIME

LIME (Ribeiro, Singh, and Guestrin, 2016): Do local linear approximation of f
near x (optionally in dimensionality reduced space), and report
coefficients

LIME for images:3

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top
3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)

4. SUBMODULAR PICK FOR
EXPLAINING MODELS

Although an explanation of a single prediction provides
some understanding into the reliability of the classifier to the
user, it is not su�cient to evaluate and assess trust in the
model as a whole. We propose to give a global understanding
of the model by explaining a set of individual instances. This
approach is still model agnostic, and is complementary to
computing summary statistics such as held-out accuracy.

Even though explanations of multiple instances can be
insightful, these instances need to be selected judiciously,
since users may not have the time to examine a large number
of explanations. We represent the time/patience that humans
have by a budget B that denotes the number of explanations
they are willing to look at in order to understand a model.
Given a set of instances X, we define the pick step as the
task of selecting B instances for the user to inspect.

The pick step is not dependent on the existence of explana-
tions - one of the main purpose of tools like Modeltracker [1]
and others [11] is to assist users in selecting instances them-
selves, and examining the raw data and predictions. However,
since looking at raw data is not enough to understand predic-
tions and get insights, the pick step should take into account
the explanations that accompany each prediction. Moreover,
this method should pick a diverse, representative set of expla-
nations to show the user – i.e. non-redundant explanations
that represent how the model behaves globally.

Given the explanations for a set of instances X (|X| = n),
we construct an n⇥ d0 explanation matrix W that represents
the local importance of the interpretable components for
each instance. When using linear models as explanations,
for an instance xi and explanation gi = ⇠(xi), we set Wij =
|wgij |. Further, for each component (column) j in W, we
let Ij denote the global importance of that component in
the explanation space. Intuitively, we want I such that
features that explain many di↵erent instances have higher
importance scores. In Figure 5, we show a toy example W,
with n = d0 = 5, where W is binary (for simplicity). The
importance function I should score feature f2 higher than
feature f1, i.e. I2 > I1, since feature f2 is used to explain
more instances. Concretely for the text applications, we set
Ij =

pPn
i=1 Wij . For images, I must measure something

that is comparable across the super-pixels in di↵erent images,

Figure 5: Toy example W. Rows represent in-
stances (documents) and columns represent features
(words). Feature f2 (dotted blue) has the highest im-
portance. Rows 2 and 5 (in red) would be selected
by the pick procedure, covering all but feature f1.

Algorithm 2 Submodular pick (SP) algorithm

Require: Instances X, Budget B
for all xi 2 X do

Wi  explain(xi, x
0
i) . Using Algorithm 1

end for
for j 2 {1 . . . d0} do

Ij  
pPn

i=1 |Wij | . Compute feature importances
end for
V  {}
while |V | < B do . Greedy optimization of Eq (4)

V  V [ argmaxi c(V [ {i}, W, I)
end while
return V

such as color histograms or other features of super-pixels; we
leave further exploration of these ideas for future work.

While we want to pick instances that cover the important
components, the set of explanations must not be redundant
in the components they show the users, i.e. avoid selecting
instances with similar explanations. In Figure 5, after the
second row is picked, the third row adds no value, as the
user has already seen features f2 and f3 - while the last row
exposes the user to completely new features. Selecting the
second and last row results in the coverage of almost all the
features. We formalize this non-redundant coverage intuition
in Eq. (3), where we define coverage as the set function c
that, given W and I, computes the total importance of the
features that appear in at least one instance in a set V .

3Image by Ribeiro, Singh, and Guestrin (2016)
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Exciting Times to Work on Explainability

Lots of open issues:

I Easily manipulated

I Explanation methods often disagree

I Plausible looking explanations may not
represent model being explained
(Adebayo et al., 2018)

Explanations can be manipulated
and geometry is to blame

Ann-Kathrin Dombrowski1, Maximilian Alber5, Christopher J. Anders1,
Marcel Ackermann2, Klaus-Robert Müller1,3,4, Pan Kessel1

1Machine Learning Group, Technische Universität Berlin, Germany
2Department of Video Coding & Analytics, Fraunhofer Heinrich-Hertz-Institute, Berlin, Germany

3Max-Planck-Institut für Informatik, Saarbrücken, Germany
4Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea

5Charité Berlin, Berlin, Germany

Abstract

Explanation methods aim to make neural networks more trustworthy and inter-
pretable. In this paper, we demonstrate a property of explanation methods which is
disconcerting for both of these purposes. Namely, we show that explanations can
be manipulated arbitrarily by applying visually hardly perceptible perturbations
to the input that keep the network’s output approximately constant. We establish
theoretically that this phenomenon can be related to certain geometrical properties
of neural networks. This allows us to derive an upper bound on the susceptibil-
ity of explanations to manipulations. Based on this result, we propose effective
mechanisms to enhance the robustness of explanations.

Original Image Manipulated Image

Figure 1: Original image with corresponding explanation map on the left. Manipulated image with
its explanation on the right. The chosen target explanation was an image with a text stating "this
explanation was manipulated".

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Image by Dombrowski et al., 2019

40 Krishna, Han, et al.

Fig. 26. The user interface for a prompt. The user is shown two explanations for a COMPAS data point, showing the feature importance
value of each of the 7 features. Red and blue indicate negative and positive feature values, respectively. See the text for more details.

E.2 Prompts Used

In this section, we share the 15 prompts that we showed users. Each prompt highlights a pair of di�erent explainability
algorithms on a COMPAS data point. For each pair, we chose the data point from the entire COMPAS set that maximized
the rank correlation between the explanations.

E.3 User Study �estions

In each of the �ve prompts, we asked participants the following questions, which we refer to as Set 1. Questions 3-4
were only shown if the user selected Mostly agree, Mostly disagree, or Completely disagree to Question (1).

(1) To what extent do you think the two explanations shown above agree or disagree with each other? (choice
between Completely agree, Mostly agree, Mostly disagree, Completely disagree)

(2) Please explain why you chose the above answer.
(3) Since you believe that the above explanations disagree (to some extent), which explanation would you rely on?

(choice between Algorithm 1 explanation, Algorithm 2 explanation, It depends)
(4) Please explain why you chose the above answer.

After answering all �ve prompts, the user was then asked the following set of questions, which we refer to as Set 2.
Questions 4-9 were only shown if the user selected Yes to Question 3.

(1) (Optional) What is your name?
(2) What is your occupation? (eg: PhD student, software engineer, etc.)
(3) Have you used explainability methods in your work before? (Yes/No)
(4) What do you use explainability methods for?
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In this section, we share the 15 prompts that we showed users. Each prompt highlights a pair of di�erent explainability
algorithms on a COMPAS data point. For each pair, we chose the data point from the entire COMPAS set that maximized
the rank correlation between the explanations.

E.3 User Study �estions

In each of the �ve prompts, we asked participants the following questions, which we refer to as Set 1. Questions 3-4
were only shown if the user selected Mostly agree, Mostly disagree, or Completely disagree to Question (1).

(1) To what extent do you think the two explanations shown above agree or disagree with each other? (choice
between Completely agree, Mostly agree, Mostly disagree, Completely disagree)

(2) Please explain why you chose the above answer.
(3) Since you believe that the above explanations disagree (to some extent), which explanation would you rely on?

(choice between Algorithm 1 explanation, Algorithm 2 explanation, It depends)
(4) Please explain why you chose the above answer.

After answering all �ve prompts, the user was then asked the following set of questions, which we refer to as Set 2.
Questions 4-9 were only shown if the user selected Yes to Question 3.

(1) (Optional) What is your name?
(2) What is your occupation? (eg: PhD student, software engineer, etc.)
(3) Have you used explainability methods in your work before? (Yes/No)
(4) What do you use explainability methods for?

LIME Method SHAP Method

Image by Krishna et al., 2022
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Local Smoothed Function Approximation

(Han, Srinivas, and

Lakkaraju, 2022)
g∗ = arg min

g∈G
E
ξ

[`(f , g , x , ξ)]

I f : function to be explained at input x

I g : explanation from class of interpretable functions G
I `: loss function

I Expectation smooths f by random perturbation ξ to x :

Z = x ⊕ ξ (e.g . addition,multiplication, ...)

Remarks:

I Approximates smoothed version of f , where amount of smoothing
depends on distribution of ξ

I Does not approximate the induced decision boundary {x : f (x) = 0}
(as often suggested)

I In practice: approximate expectation by finite nr. of samples of ξ
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Example: C-LIME

g∗ = arg min
g∈G

E
ξ

[`(f , g , x , ξ)]

I Squared error:

`(f , g , x , ξ) =
(
f (Z )− g(Z )

)2

for additive perturbations Z = x + ξ

I Linear approximations G:

g(x) = xᵀθ + θ0 (θ ∈ Rd , θ0 ∈ R)

NB: output only feature weights θ∗, not intercept θ∗0 .

I Normally distributed perturbations:

ξ ∼ N (0,Σ) for hyperparameter Σ � 0

Z ∼ N (x ,Σ)
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Example: SmoothGrad

φf (x) = E
Z∼N (x,Σ)

[∇f (Z )]

Sharper sensitivity maps: removing noise by adding noise

Figure 4. Effect of sample size on the estimated gradient for inception. 10% noise was applied to each image.

Figure 5. Qualitative evaluation of different methods. First three (last three) rows show examples where applying SMOOTHGRAD had
high (low) impact on the quality of sensitivity map.

Theorem (Agarwal et al., 2021)

SmoothGrad and C-Lime are equivalent.

Proof sketch:
1. For Gaussian Z , Stein’s lemma (proved by a variant of integration by

parts) states:

E
Z∼N (x,Σ)

[∇f (Z )] = Σ−1 E[f (Z )(Z − x)]

2. The C-LIME objective is a least-squares problem:

arg min
θ,θ0

E
[(
f (Z )− Zᵀθ − θ0

)2
]

Minimizing first in θ0 gives θ0 = E[f (Z )]− xᵀθ. Then setting the
gradient w.r.t. θ to 0 leads to the same solution as SmoothGrad:

θ = Σ−1 E[f (Z )(Z − x)]

14 / 47
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Sampling High-level Features
Motivation:
I Low-level features not interpretable (e.g. pixels)
I Want explanation in terms of high-level concepts (e.g. superpixels)

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top
3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)

4. SUBMODULAR PICK FOR
EXPLAINING MODELS

Although an explanation of a single prediction provides
some understanding into the reliability of the classifier to the
user, it is not su�cient to evaluate and assess trust in the
model as a whole. We propose to give a global understanding
of the model by explaining a set of individual instances. This
approach is still model agnostic, and is complementary to
computing summary statistics such as held-out accuracy.

Even though explanations of multiple instances can be
insightful, these instances need to be selected judiciously,
since users may not have the time to examine a large number
of explanations. We represent the time/patience that humans
have by a budget B that denotes the number of explanations
they are willing to look at in order to understand a model.
Given a set of instances X, we define the pick step as the
task of selecting B instances for the user to inspect.

The pick step is not dependent on the existence of explana-
tions - one of the main purpose of tools like Modeltracker [1]
and others [11] is to assist users in selecting instances them-
selves, and examining the raw data and predictions. However,
since looking at raw data is not enough to understand predic-
tions and get insights, the pick step should take into account
the explanations that accompany each prediction. Moreover,
this method should pick a diverse, representative set of expla-
nations to show the user – i.e. non-redundant explanations
that represent how the model behaves globally.

Given the explanations for a set of instances X (|X| = n),
we construct an n⇥ d0 explanation matrix W that represents
the local importance of the interpretable components for
each instance. When using linear models as explanations,
for an instance xi and explanation gi = ⇠(xi), we set Wij =
|wgij |. Further, for each component (column) j in W, we
let Ij denote the global importance of that component in
the explanation space. Intuitively, we want I such that
features that explain many di↵erent instances have higher
importance scores. In Figure 5, we show a toy example W,
with n = d0 = 5, where W is binary (for simplicity). The
importance function I should score feature f2 higher than
feature f1, i.e. I2 > I1, since feature f2 is used to explain
more instances. Concretely for the text applications, we set
Ij =

pPn
i=1 Wij . For images, I must measure something

that is comparable across the super-pixels in di↵erent images,

Figure 5: Toy example W. Rows represent in-
stances (documents) and columns represent features
(words). Feature f2 (dotted blue) has the highest im-
portance. Rows 2 and 5 (in red) would be selected
by the pick procedure, covering all but feature f1.

Algorithm 2 Submodular pick (SP) algorithm

Require: Instances X, Budget B
for all xi 2 X do

Wi  explain(xi, x
0
i) . Using Algorithm 1

end for
for j 2 {1 . . . d0} do

Ij  
pPn

i=1 |Wij | . Compute feature importances
end for
V  {}
while |V | < B do . Greedy optimization of Eq (4)

V  V [ argmaxi c(V [ {i}, W, I)
end while
return V

such as color histograms or other features of super-pixels; we
leave further exploration of these ideas for future work.

While we want to pick instances that cover the important
components, the set of explanations must not be redundant
in the components they show the users, i.e. avoid selecting
instances with similar explanations. In Figure 5, after the
second row is picked, the third row adds no value, as the
user has already seen features f2 and f3 - while the last row
exposes the user to completely new features. Selecting the
second and last row results in the coverage of almost all the
features. We formalize this non-redundant coverage intuition
in Eq. (3), where we define coverage as the set function c
that, given W and I, computes the total importance of the
features that appear in at least one instance in a set V .

Approach:
I Binary parametrization hx : {0, 1}m → X of variations of x :

I x̃i = 1: set i-th interpretable high-level concept from x to be present
I x̃i = 0: remove i-th interpretable high-level concept from x (e.g.

replace superpixel by gray values)

I Approximate the new function of high-level concepts

fx(x̃) = f (hx(x̃)) for x̃ ∈ {0, 1}m.

NB fx and f have different domains, so an approximation of fx is not an
approximation of f
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Example: LIME

g∗ = arg min
g∈G

E
ξ

[`(f , g , x , ξ)]

I Approximate fx : Weighted squared error:

`(fx , g , ξ) = πx(Z̃ )
(
fx(Z̃ )− g(Z̃ )

)2

Let x̄ = h−1
x (x) be the high-level representation of x . (Typically

x̄ = 1.) Then ξ ∈ {0, 1}m masks high-level features:

Z̃i =

{
1 if x̄i = 1 and ξi = 1,

0 otherwise.

I Linear approximations G in terms of high-level features
I Default weights downscale distant instances:

πx(Z̃ ) = exp
(
− dcos(Z̃ , x̄)2

2ν2

)
for hyperparameter ν > 0.

I Default binary masks: ξi ∼ Bernoulli(1/2)
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Example: LIME
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Example: SHAP

Axiomatic Characterization of Linear Approximation
(Lundberg and Lee, 2017 translate game-theory result by Young, 1985)

1. Local accuracy at input x :

fx(x̄) = x̄ᵀθ + θ0

2. No weight on features missing from x̄ :

x̄i = 0 =⇒ θi = 0

3. Symmetry:5 For any permutation π : [m]→ [m]

θ(πfx) = πθ(fx)

4. Strong monotonicity: For any two functions fx , f
′
x

If f ′x (x̃)− f ′x (x̃ \ i) ≥ fx(x̃)− fx(x̃ \ i) for all x̃ ∈ {0, 1}m,
then θi (f

′
x ) ≥ θi (fx).

5Lundberg and Lee, 2017 have incorrect “proof” that symmetry is implied by the
other conditions.
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then θi (f

′
x ) ≥ θi (fx).

Theorem (Young, 1985; Lundberg and Lee, 2017)

The unique θ, θ0 that satisfy all four axioms are θ0 = fx(∅) and

θi =
∑

x̃ :x̃i≤x̄i

|x̃ |!(m − |x̃ | − 1)!

m!

[
fx(x̃)− fx(x̃ \ i)

]
,

where |x̃ | is the number of ones in x̃ , and x̃ \ i is x̃ with the i-th
component set to 0.
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3. Symmetry: For any permutation π : [m]→ [m]: θ(πfx) = πθ(fx)
4. Strong monotonicity: For any two functions fx , f

′
x

If f ′x (x̃)− f ′x (x̃ \ i) ≥ fx(x̃)− fx(x̃ \ i) for all x̃ ∈ {0, 1}m,
then θi (f

′
x ) ≥ θi (fx).

Theorem (Young, 1985; Lundberg and Lee, 2017)

The unique θ, θ0 that satisfy all four axioms are θ0 = fx(∅) and

θi =
∑

x̃ :x̃i≤x̄i

|x̃ |!(m − |x̃ | − 1)!

m!

[
fx(x̃)− fx(x̃ \ i)

]
,

where |x̃ | is the number of ones in x̃ , and x̃ \ i is x̃ with the i-th
component set to 0.
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Kernel SHAP

There is a surprising relation between SHAP and LIME:

Theorem (Lundberg and Lee (2017))

SHAP is equivalent to LIME with the weights set to

πx(Z̃ ) =
m − 1(

m
|Z̃ |
)
|Z̃ |(m − |Z̃ |)

.

I NB πx(∅) = πx(1) =∞. Interpret as hard constraints that
g(∅) = fx(∅) and g(1) = fx(1).

Proof remarks:
I The proof by Lundberg and Lee (2017) is based on evaluating the

LIME weighted least squares solution θ = (XᵀWX )−1XᵀWy
I They omit many non-trivial proof details
I I have checked all steps except their assumption that the weighted

least squares solution with the infinite weights is the limit of the
least squares solutions for finite weights tending to ∞
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Asymptotic Analysis of LIME for Images

Garreau, Mardaoui

What Does LIME Really See in Images?

ICML, 2021



LIME for Images

1. Decompose image into d superpixels (small, homogeneous patches)5

2. Can sample perturbed image Z by
I Sample d Bernoulli(1/2) variables B = (B1, . . . ,Bd)
I If B j = 1, then keep j-th superpixel from original image
I If B j = 0, then replace j-th superpixel by its average pixel value.

Image LIME
I on a high level, Image LIME operates as follows:

1. decompose › in d superpixels (small, homogeneous patches);
2. create a number of perturbed samples (= new images) x1, . . . , xn;
3. weight the perturbed samples;
4. query the model, getting predictions yi = f (xi);
5. build a local surrogate model —̂n fitting the yis on the presence or absence of superpixels.

I generally, highlight in the original image the (top 5) positive superpixels:

predLcted: traLler_truck (35.2%) LIM( explanatLon

10

5Image courtesy of Damien Garreau
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LIME for Images

1. Decompose image into d superpixels (small, homogeneous patches)

2. Can sample perturbed image Z by
I Sample d Bernoulli(1/2) variables B = (B1, . . . ,Bd)
I If B j = 1, then keep j-th superpixel from original image
I If B j = 0, then replace j-th superpixel by its average pixel value.

3. Query response Ỹ = f (Z )

4. Weight image Z by distance to original

π = exp
(
− dcos(B,1)2

2ν2

)
for hyperparameter ν > 0

5. Sample n times and fit weighted ridge regression5

θ̂n = arg min
θ∈Rd

min
θ0∈R

n∑

i=1

πi (Ỹi − Bᵀ
i θ − θ0)2 + λ‖θ‖2

5In practice λ = 1 is tiny; in analysis take λ = 0 for simplicity.
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Asymptotic Analysis of LIME for Images

I Recall that B = (Z 1, . . . ,Z d) i.i.d. Bernoulli(1/2)

I Induces distribution on weight π and perturbed image Z

Theorem (Garreau, Mardaoui, 2021)

Suppose f bounded and λ = 0. Then

θ̂n → θ in probability,

where

θj = c1 E
B

[πf (Z )] + c2 E
B

[πB j f (Z )] + c3

∑

k∈{1,...,d}
k 6=j

E
B

[πBk f (Z )]

for some constants c1, c2, c3 that do not depend on f , and which can be
computed in closed form.
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Consequences

θj = c1 E
B

[πf (Z )] + c2 E
B

[πB j f (Z )] + c3

∑

k∈{1,...,d}
k 6=j

E
B

[πBk f (Z )]

Consequence 1

I Apart from sampling noise, LIME explanations are linear in f :

θf +g = θf + θg

Consequence 2: Large Bandwidth

I As ν →∞: c1 → −2, c2 → 4, c3 → 0, and π → 1 a.s.

θj → 2
(
E
B

[f (Z )|B j = 1]− E
B

[f (Z )]
)

I Compares value of f with and without fixing the j-th superpixel to
be as in the model.
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Discussion: What are local approximations good for?

Common question:
Which local approximation method should I use?
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Discussion: What are local approximations good for?

Common question:
Which local approximation method should I use?

Current state of affairs:

I Nobody knows, because none of the approximation methods specify
under which conditions or for what purpose they can be used

I In practice: people use the method(s) with best software; e.g. SHAP

I And sometimes they are impressed that SHAP has a justification
from the economics literature, without considering whether the
SHAP axioms are appropriate for their task: motivation by
mathematical intimidation.

What can be done?
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Discussion: What are local approximations good for?

Common question:
Which local approximation method should I use?

One Possible View:

I Doshi-Velez and Kim, 2017: we should provide explanations when
the user’s goal is not fully specified.

I If we take this seriously, then the user should be able to achieve at
least some goals using the explanations. What are they?
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Outline

Introduction

Local Function Approximation Methods

Algorithmic Recourse
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Example: Counterfactual Explanations

“If you would have had an income of e40 000 instead of e35 000,

your loan request would have been approved.”

s
x1

x2

f (x) = 0

-1

+1

x

x̃ (counterfactual)

φf (x)

Counterfactual explanation: x̃ = arg min
x′:sign(f (x′))=+1

dist(x ′, x)

Viewed as attribution method: φf (x) = x̃ − x
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Explanations with Recourse as their Goal

“If you change your current income of e35 000 to e40 000,

then your loan request will be approved.”

s
x1

x2

f (x) = 0

-1

+1

x

x̃

φf (x)

I Attribution methods provide recourse if they tell the user how to
change their features such that f takes their desired value.
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An Impossibility Result

Fokkema, De Heide, Van Erven

Attribution-based Explanations that
Provide Recourse Cannot be Robust

ArXiv:2205.15834 preprint, 2023



Recourse Sensitivity
I (Fokkema, de Heide, and van Erven, 2023): our approach to define

weakest possible requirement for providing recourse.

s
x1

x2

f (x) = 0

x

1. Assume user can change their features by at most some δ > 0

2. φf (x) can point in any direction that provides recourse within
distance δ, and length does not matter as long as it is > 0.

3. If no direction provides recourse, then φf (x) can be arbitrary.
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Robustness of Explanations
Compare:

1. “If you change your current income of e35 000 to e40 000, then
your loan request will be approved.”

2. “If you change your current income of e35 001 to e45 000, then
your loan request will be approved.”

Minor changes in x should not cause big changes in explanations!

Robustness: If f is continuous, then φf should also be continuous.
(e.g. survey of recourse by Karimi et al., 2021)

D Alvarez-Melis, TS Jaakkola

arXiv preprint arXiv:1806.08049, 2018 • arxiv.org

Save Cite Cited by 510 Related articles All 2 versions

Showing the best result for this search. See all results

On the robustness of interpretability methods

We argue that robustness of explanations---i.e., that similar inputs should give rise to
similar explanations---is a key desideratum for interpretability. We introduce metrics to
quantify robustness and demonstrate that current methods do not perform well according
to these metrics. Finally, we propose ways that robustness can be enforced on existing
interpretability approaches.

arxiv.org

on the robustness of interpretability methods - Google Scholar https://scholar.google.nl/scholar?q=on+the+robustness+of+interpretabil...

1 of 1 06/10/2023, 14:18
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to these metrics. Finally, we propose ways that robustness can be enforced on existing
interpretability approaches.

arxiv.org

on the robustness of interpretability methods - Google Scholar https://scholar.google.nl/scholar?q=on+the+robustness+of+interpretabil...

1 of 1 06/10/2023, 14:18

29 / 47



Robustness of Explanations
Compare:

1. “If you change your current income of e35 000 to e40 000, then
your loan request will be approved.”

2. “If you change your current income of e35 001 to e45 000, then
your loan request will be approved.”

Minor changes in x should not cause big changes in explanations!

Robustness: If f is continuous, then φf should also be continuous.
(e.g. survey of recourse by Karimi et al., 2021)

D Alvarez-Melis, TS Jaakkola

arXiv preprint arXiv:1806.08049, 2018 • arxiv.org

Save Cite Cited by 510 Related articles All 2 versions

Showing the best result for this search. See all results

On the robustness of interpretability methods

We argue that robustness of explanations---i.e., that similar inputs should give rise to
similar explanations---is a key desideratum for interpretability. We introduce metrics to
quantify robustness and demonstrate that current methods do not perform well according
to these metrics. Finally, we propose ways that robustness can be enforced on existing
interpretability approaches.

arxiv.org

on the robustness of interpretability methods - Google Scholar https://scholar.google.nl/scholar?q=on+the+robustness+of+interpretabil...

1 of 1 06/10/2023, 14:18

D Alvarez-Melis, TS Jaakkola

arXiv preprint arXiv:1806.08049, 2018 • arxiv.org

Save Cite Cited by 510 Related articles All 2 versions

Showing the best result for this search. See all results

On the robustness of interpretability methods

We argue that robustness of explanations---i.e., that similar inputs should give rise to
similar explanations---is a key desideratum for interpretability. We introduce metrics to
quantify robustness and demonstrate that current methods do not perform well according
to these metrics. Finally, we propose ways that robustness can be enforced on existing
interpretability approaches.

arxiv.org

on the robustness of interpretability methods - Google Scholar https://scholar.google.nl/scholar?q=on+the+robustness+of+interpretabil...

1 of 1 06/10/2023, 14:18

29 / 47



Robustness of Explanations
Compare:

1. “If you change your current income of e35 000 to e40 000, then
your loan request will be approved.”

2. “If you change your current income of e35 001 to e45 000, then
your loan request will be approved.”

Minor changes in x should not cause big changes in explanations!

Robustness: If f is continuous, then φf should also be continuous.
(e.g. survey of recourse by Karimi et al., 2021)

D Alvarez-Melis, TS Jaakkola

arXiv preprint arXiv:1806.08049, 2018 • arxiv.org

Save Cite Cited by 510 Related articles All 2 versions

Showing the best result for this search. See all results

On the robustness of interpretability methods

We argue that robustness of explanations---i.e., that similar inputs should give rise to
similar explanations---is a key desideratum for interpretability. We introduce metrics to
quantify robustness and demonstrate that current methods do not perform well according
to these metrics. Finally, we propose ways that robustness can be enforced on existing
interpretability approaches.

arxiv.org

on the robustness of interpretability methods - Google Scholar https://scholar.google.nl/scholar?q=on+the+robustness+of+interpretabil...

1 of 1 06/10/2023, 14:18

D Alvarez-Melis, TS Jaakkola

arXiv preprint arXiv:1806.08049, 2018 • arxiv.org

Save Cite Cited by 510 Related articles All 2 versions

Showing the best result for this search. See all results

On the robustness of interpretability methods

We argue that robustness of explanations---i.e., that similar inputs should give rise to
similar explanations---is a key desideratum for interpretability. We introduce metrics to
quantify robustness and demonstrate that current methods do not perform well according
to these metrics. Finally, we propose ways that robustness can be enforced on existing
interpretability approaches.

arxiv.org

on the robustness of interpretability methods - Google Scholar https://scholar.google.nl/scholar?q=on+the+robustness+of+interpretabil...

1 of 1 06/10/2023, 14:18

29 / 47



Impossibility in Binary Classification

Theorem (Fokkema, De Heide, Van Erven, 2022)

For any δ > 0 there exists a continuous function f such that no
attribution method φf can be both recourse sensitive and continuous.

I Power of math: can reason about all explanation methods that
could possibly exist
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Proof Sketch

x

L

R

3
2δ

f (x)

L = {x : recourse possible by moving at most δ left}
R = {x : recourse possible by moving at most δ right}

Recourse sensitivity implies:

φf (x)





< 0 for x ∈ L \ R
> 0 for x ∈ R \ L
6= 0 for x ∈ L ∩ R

But this contradicts continuity!
(by the mean-value theorem)

Can embed 1D example in higher
dimensions as well.
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Is Algorithmic Recourse a Good Idea at All?

Fokkema, Garreau, Van Erven

The Risks of Recourse in Binary Classification

ArXiv::2306.00497 preprint, 2023



Effect of Recourse on the Population

Before recourse After recourse

What happens to the accuracy of the classifier?

I Accuracy matters!
For example, incorrect +1 classifications = users defaulting on loans
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Effect of Recourse

Situation before Recourse:

I User distribution: (X0,Y ) ∼ P

I Classifier f : X → {−1,+1}
I Risk: RP(f ) = P(f (X0) 6= Y )

Effect of Recourse:

I User features change from X0 to X

I Distribution of Y may change
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Need to Model User Behavior

-1 +1

0

0.2

0.4

0.6

0.8

1

x

P(Y = 1|X = x)

I Compliant users: probability of Y after recourse is P(Y |X )

I Defiant users: probability of Y after recourse is P(Y |X0)
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Need to Model User Behavior

Examples:
I Credit loan application:

I Compliant: Applicant improves risky behaviour
I Defiant: Applicant tries to “game the system”

I Medical Diagnosis:
I Compliant: Patient improves their health
I Defiant: Patient takes medicine to reduce symptoms

I Job applications:
I Compliant: Applicant improves their skills
I Defiant: Applicant improves their CV

I Compliant users: probability of Y after recourse is P(Y |X )

I Defiant users: probability of Y after recourse is P(Y |X0)
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Effect of Recourse on Population-level Accuracy

+1 correct
−1 correct
+1 wrong
−1 wrong

R̂P (f
∗
P ) = 0.11 R̂Q(f

∗
P ) = 0.30

Before recourse After recourse
(compliant users)

I Simulation with Gaussian data
I Average nr. of mistakes goes up / accuracy goes down
I Many more customers defaulting on their loans!

36 / 47



Learning-theoretic Framework

Situation before Recourse:

I User distribution: (X0,Y ) ∼ P

I Classifier f : X → {−1,+1}
I Risk: RP(f ) = P(f (X0) 6= Y )

I Users’ choice to accept recourse is B ∈ {0, 1} with
Pr(B = 1|X0) = r(X0).

Situation with Recourse:

I Users arrive as before: X0 ∼ P

I Recourse proposal: XCF = arg minx :f (x)=+1 ‖x − X0‖
I Users’ choice to accept is B ∈ {0, 1} with Pr(B = 1|X0) = r(X0):

X = (1− B)X0 + BXCF

I Q is the resulting distribution of X0,B,X ,Y

I Risk: RQ(f ) = Q(f (X0) 6= Y )
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Recourse Increases the Risk

Bayes-optimal
classifier under P:

f ∗P = arg min
f

RP(f )

f ∗P (x) =

{
+1 if P(Y = 1|X0 = x) ≥ 1/2,

−1 otherwise.

Regularity conditions:

I Well-defined setup: {x ∈ X : f ∗P (x) = +1} is closed

I Continuous conditional probabilities: P(Y = 1|X0 = x) = 1/2 for all
x on the decision boundary of f ∗P

Theorem

Then, both if the users are defiant and if the users are compliant,
recourse always increases the risk:
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f

RP(f )

f ∗P (x) =

{
+1 if P(Y = 1|X0 = x) ≥ 1/2,

−1 otherwise.

Regularity conditions:

I Well-defined setup: {x ∈ X : f ∗P (x) = +1} is closed

I Continuous conditional probabilities: P(Y = 1|X0 = x) = 1/2 for all
x on the decision boundary of f ∗P

Theorem

Then, both if the users are defiant and if the users are compliant,
recourse always increases the risk:

RQ(f ∗P ) ≥ RP(f ∗P ).

The inequality is strict if the probability of recourse in the negative class
is non-zero: P(B = 1, f ∗P (X0) = −1) > 0.
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Recourse Increases the Risk
Regularity conditions:
I Well-defined setup: {x ∈ X : f ∗P (x) = +1} is closed
I Continuous conditional probabilities: P(Y = 1|X0 = x) = 1/2 for all

x on the decision boundary of f ∗P

Theorem

Then, both if the users are defiant and if the users are compliant,
recourse always increases the risk:
Defiant case:

RQ(f ∗P ) = P(B = 1,Y = −1)− P(B = 1, f ∗P (X0) 6= Y ) + RP(f ∗P )

≥ RP(f ∗P )

Compliant case:

RQ(f ∗P ) = 1
2P(B = 1, f ∗P (X0) = −1)− P(B = 1, f ∗P (X0) = −1,Y = 1)

+ RP(f ∗P )

≥ RP(f ∗P ).
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Proof Idea: Defiant Case

-1 +1

0

0.2

0.4

0.6
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1

x

P(Y = 1|X = x)

I Defiant case: Q(Y |X ,X0) = P(Y |X0)

I Recourse misclassifies users from class −1 as class +1
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Proof Idea: Compliant Case
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Proof Idea: Compliant Case

-1 +1

0

0.2

0.4

0.6

0.8

1

x

P(Y 6= f ∗P (x)|X = x)

I Compliant case: Q(Y |X ,X0) = P(Y |X )

I Recourse moves users from high certainty to lowest certainty region
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Proof Idea: Compliant Case
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Strategic Classification

Recourse
accepted

x1

x 2 decision boundary

effective decision boundary

I Suppose recourse accepted deterministically within distance D of
decision boundary

I Cancel effect of recourse by moving decision boundary back by
distance D

Definition

A set of classifiers F is invariant under recourse if for any f ∈ F there
exists a unique f ′ ∈ F such that the decision boundary for f without
recourse is equal to the effective decision boundary of f ′ with recourse.

42 / 47



Strategic Classification

Recourse
accepted

x1

x 2 decision boundary
effective decision boundary

I Suppose recourse accepted deterministically within distance D of
decision boundary

I Cancel effect of recourse by moving decision boundary back by
distance D

Definition

A set of classifiers F is invariant under recourse if for any f ∈ F there
exists a unique f ′ ∈ F such that the decision boundary for f without
recourse is equal to the effective decision boundary of f ′ with recourse.

42 / 47



Strategic Classification

Recourse
accepted

x1

x 2 decision boundary
effective decision boundary

I Suppose recourse accepted deterministically within distance D of
decision boundary

I Cancel effect of recourse by moving decision boundary back by
distance D

Definition

A set of classifiers F is invariant under recourse if for any f ∈ F there
exists a unique f ′ ∈ F such that the decision boundary for f without
recourse is equal to the effective decision boundary of f ′ with recourse.
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Strategic Classification

Assumptions:

I F invariant under recourse

Theorem (Defiant Case)

Recourse has no effect:

min
f∈F

RQf
(f ) = min

f∈F
RP(f ).

I Write Qf instead of Q to emphasize dependence of the effect of
recourse on f .
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Strategic Classification

Assumptions:

I F invariant under recourse

Theorem (Compliant Case)

Recourse may have positive effect:
Let f̄ ∈ arg minf∈F RP(f ) with corresponding f ′ ∈ F that has the same
effective decision boundary after recourse. Then

min
f∈F

RQf
(f ) ≤ RQf ′ (f̄ ).

I Think of Qf ′ as moving users away from the decision boundary
compared to P, so plausible that RQf ′ (f̄ ) < RP(f̄ ).

I Only case where we find that recourse is beneficial in terms of
accuracy.

I But cancels the effect of recourse and does not help any users from
the original −1 class. Not really what we imagined. . .
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Conclusion

Zooming Out

I Most work on explainability is empirical

I Empirical approach has been very successful in deep learning, but
struggles to find proper foundations for explainability

I Formal analysis is slow and leads to more modest claims, but builds
up solid foundations

Where Do We Go From Here?

1. Formalize the many possible goals of explainability

2. Bring exaggerated empirical claims down to earth by proving
necessary/sufficient conditions

3. Better understanding of limitations =⇒ develop better explanations

4. Explainability results for inverse problems? What are the key
questions?
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