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Example: Betting on Football Games

» Before every match t in the English Premier
League, my PhD student Dirk van der Hoeven
wants to predict the goal difference Y;

> Given feature vector X; € R?, he may predict
Y; = w] X; with a linear model

» After the match: observe Y;

» Measure loss by f(w;) = (Y; — ¥:)? and
improve parameter estimates: w; — W41

Precursor to modern football in China,
Han Dynasty (206 BC — 220 AD)
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Goal: Predict almost as well as the best possible parameters u:

T

Regrety = Z fr(w) — Z fe(u)

t=1 t=1
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Online Convex Optimization

Parameters w take values in a convex domain W C R¢
fort=1,2,..., T do
Learner estimates w; € W
Nature reveals convex loss function f; : W — R
end for

Viewed as a zero-sum game against Nature:

V' = minmax minmax --- minmax max RegretT
w; f w2 h wr  fr uweWw



Online Gradient Descent

Wiey1 = W — met(wt)

Wil = &i{)\}”d’tﬂ_wn

Theorem (Zinkevich, 2003)

Suppose W compact with diameter at most D, and ||Vf(w,)|| < G.
Then online gradient descent with n; = # guarantees

Regrety < ;GDﬁ

for any choices of Nature.

Without further assumptions, this is optimal (up to a constant factor).



Von Neumann’s Minimax Theorem
A Minimax Theorem:
inf sup f(a, b) = sup inf f(a,b) (*)
ac A beB beB ac A
Von Neumann’'s Minimax Theorem:
» f(a,b) = aTMb is the pay-off of a two-player zero-sum game, for an
m X n pay-off matrix M.
» ac A, and b€ A, are probability vectors that represent mixed
strategies.

Classical proof by Nash requires Brouwer's fixed-point theorem.



Von Neumann’s Minimax Theorem
A Minimax Theorem:

inf sup f(a, b) = sup inf f(a,b) *
ac A beB beEB ac A

Von Neumann's Minimax Theorem:

» f(a,b) = aTMb is the pay-off of a two-player zero-sum game, for an
m x n pay-off matrix M.

> ac€ A, and b € A, are probability vectors that represent mixed
strategies.

Classical proof by Nash requires Brouwer's fixed-point theorem.

Theorem (Variant of Freund, Schapire, 1999, Cesa-Bianchi, Lugosi, 2006)

(*) holds if:

f(a, b) convex in a, concave in b;

A C R™ compact and convex; B C R" convex;
[|Vaf(a, b)|| < G < oo for all a,b;
sup,, f(a, b) < oo for all a

vV vV v Vv



An Elementary Proof Using OCO, Part |

i.) inf sup f(a, b) > sup inf f(a, b): Moving second gives advantage.
ac A beB beBacA

6/14



An Elementary Proof Using OCO, Part |
i.) inf sup f(a, b) > sup inf f(a, b): Moving second gives advantage.
ac A beB beBacA
ii.) inf supf(a, b) < supinf f(a,b):
ac A beB beBacA

There exist a1, ...,ar and by, ..., bt such that:

.
> f(ae be) <inf > f(a, be) + VT
t=1

t=1

f(at, by) > sup f(as, b) — i
b T

Proof.

» Select a; depending on by, ..., b;_1 using online gradient descent on
fr(a) = f(a, bt).
» Let b; be the worst response to a; uptoe=1/T. O

6
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An Elementary Proof Using OCO, Part Il

L3 (o)

;gis%pf(ab <supf( Zat, )§

~|I
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inf supf(a,b) <s (TET: ) <s

acA b
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An Elementary Proof Using OCO, Part Il

. 1 « 1 <
inf supf(a,b)gs:pf(72at,b) <s p72f(at,b>

acA b

— =
O‘
+
a
3

< supmf fla
b

and let T — oo.



Online Portfolio Selection

Investing without a stochastic model:

> Sequential investment in d assets

> x:; > 0: ratio between closing and opening
price for i-th asset in trading period t

> Reinvest fraction w;,; of money in asset /
» Trader’'s wealth grows by factor w]x:

> fi(w) = —log(w'a:)
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» 3 sep't 2 3 ‘ 5
The Bitcoin (XBT) to EUR exchange rate

crashing (again) after China announces trading
restrictions. (Figure from www.xe.com.)
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Theorem (Cover,1991)
There exists an algorithm with runtime O(T?) that guarantees
Regret? = O(dlog T)

for any asset prices x1,...,xT. This is optimal.
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> fi(w) = —log(w'a:)
Theorem (Cover,1991)
There exists an algorithm with runtime O(T?) that guarantees
Regret? = O(dlog T)

for any asset prices x1,...,xT. This is optimal.

run-time: o(T) o(T?) o(T3) o(T4
max. data size:  10%° (Google)  10° (big data) 2000 (data) 300 (small data)
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Open Problem (for 27 years)

Is there an algorithm for online portfolio selection with O(T?) (or
preferably O(T)) runtime that also guarantees O(d log T) regret?

State of the Art

» O(T) runtime, but O(1/dT log d) regret
» O(T) runtime and O(dG log T) regret, but assumes bounded gradients

Il

|V fe(we)]| = T—‘“t < G (cannot handle stocks crashing)

w,
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Is there an algorithm for online portfolio selection with O(T?) (or
preferably O(T)) runtime that also guarantees O(d log T) regret?

State of the Art

» O(T) runtime, but O(1/dT log d) regret
» O(T) runtime and O(dG log T) regret, but assumes bounded gradients
|V fe(we)]| = ”f—‘”t < G (cannot handle stocks crashing)

Our Progress (with Van der Hoeven, Koolen, Kottowski)

> Have simple proposed algorithm with O(d? T?) runtime:
minimize ¢(w) = 3L, f(w) — )‘27:1 log(wTe;)

» Using self-concordance techniques from interior point methods:

-
Regret}? = O <Z g2+ dlog T> R

t=1

where gy = \/Vft(wt)TV*2¢t(wt)Vft(wt) measures gradient in local norm

» Local norms are always bounded and go to zero as we get more data

> This recovers O(d log T) in special cases, and implies O((log T)?) in general. ..
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Deep Neural Networks

Input

\()m] ut

Self-driving cars
Class of functions parametrized by matrices
w = (Al,...,Am)Z

hw(w) =AnOm—1Am—1-- UlAla:y

where 0;(z) = max{0, z} applied component-wise to vectors.
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Deep Learning: the Big Question
Optimization
» Millions of images: too many to process all at once

» Process one image at a time using online learning algorithms:

> Online gradient descent (OGD)
» AdaGrad = OGD with separate 7; per dimension
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But even if you disable all standard regularization, it still works!
[Zhang,Bengio,Hardt,Recht,Vinyals,ICLR 2017]

So how are the parameters restricted?

v
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» AdaGrad = OGD with separate 7; per dimension

High-dimensional Setting

» Still many more parameters than images (e.g. 25 times as many)

» Statistically obvious: we cannot estimate so many parameters unless
we add constraints (e.g. restrict to L, ball)

> But even if you disable all standard regularization, it still works!
[Zhang,Bengio,Hardt,Recht,Vinyals,ICLR 2017]

» So how are the parameters restricted?

Big Question: Can we characterize subspace searched by optimization
methods (on realistic inputs) and prove it is small enough to generalize?
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Beyond Adversarial Thinking: A Modern View

Applications Are Not Zero-sum Games:

1. Worst-case regret witnessed on data where even best parameters

predict poorly. So no point in achieving small regret.

Nature is not trying to win (e.g. football teams do not fix results to
make statistical analysis hard)



Beyond Adversarial Thinking: A Modern View

Applications Are Not Zero-sum Games:

1. Worst-case regret witnessed on data where even best parameters
predict poorly. So no point in achieving small regret.

2. Nature is not trying to win (e.g. football teams do not fix results to
make statistical analysis hard)

Theorem (Van Erven, Koolen, 2016)
The MetaGrad algorithm guarantees the following
bound:
T VTIninT
Regret’ < Z(wt —u)"Vi(w:) <
t=1

of dinT+dInT

where

-
Z u—w)TV(w))?
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Consequences

1. Non-stochastic adaptation:

Convex f; | VTInInT

Exp-concave f; dinT

Fixed convex f; = f dinT

2. Stochastic without curvature
Suppose f; i.i.d. with stochastic optimum «* = argmin,, ¢y, E¢[f(u)].
Then expected regret E[Regret% ]:

Absolute loss* fi(w) = |w — X¢| InT
Hinge loss max{0,1 — Y:(w, X;)} dinT

(BdIn T)Y/C=A) T-5)/(2=5)

*Conditions apply
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MetaGrad Football Experiments (Preliminary)

Regression results square loss I2ball

20000 —— Metagrad full
17500 —— Metagrad diag
—— Adagrad diag

15000

12500
5 Dirk van der Hoeven
& 10000 (my PhD student)
o<

7500

5000

2500

0 1000 2000 3000 4000 5000 6000
T Raphaél Deswarte
(visiting PhD student)
> Predict difference in goals in 6000 football games in English Premier
League (Aug 2000-May 2017).
» Square loss on Euclidean ball

» 37 features: running average of goals, shots on goal, shots over
m=1,...,10 previous games; multiple ELO-like models; intercept.

14/14



