Location of Maximum Density Depends on Parametrisation

$$Y = \ln(X) \qquad Y = 0 \leftrightarrow X = 1$$

Y has standard normal distribution

Location of Maximum Density Depends on Parametrisation

$$Y = \ln(X) \qquad Y = 0 \leftrightarrow X = 1$$

Y has standard normal distribution

Uniform Density in One Parametrisation is not Uniform in Another

$$Y = \ln(X)$$

Y has uniform density on [0,1]

Uniform Density in One Parametrisation is not Uniform in Another

$$Y = \ln(X)$$

Y has uniform density on [0,1]

Objective Decisions?

- Statistical learning software used to predict risk scores for re-offending of criminals in Broward County, Florida
- Designed to make these predictions more objective!
- Based on 7000 people arrested
- Predicts correctly 61% (50% would be chance level)
 - Q. Would judges do better?
 - Q. What would be the Bayes error / is this predictable at all from the available data?

Source: www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Objective Decisions?

- Statistical learning software used to predict risk scores for re-offending of criminals in Broward County, Florida
- Designed to make these predictions more objective!
- Based on 7000 people arrested
- Predicts correctly 61% (50% would be chance level)
 - Q. Would judges do better?
 - Q. What would be the Bayes error / is this predictable at all from the available data?
- But different types of errors for white vs African American:

	WHITE	AFRICAN AMERICAN
Labeled higher risk, but did not re-offend	23.5%	44.9%
Labeled lower risk, but did re-offend	47.7%	28.0%

Source: www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing