Making Regional Forecasts Add Up

Tim van Erven1,2

Joint work with: Jairo Cugliari2
Regional Electricity Consumption

We want to forecast:

1. Electricity consumption in K regions
2. The total consumption of those regions

(A “region” could be any group of customers.
- E.g. customers with the same contract.)
Measuring Performance

- **Real consumptions**
 - Regions: \(y = (y_1, \ldots, y_K) \)
 - Total: \(y_\star = y_1 + \ldots + y_K \)

- **Predictions**
 - Regions: \(\hat{y} = (\hat{y}_1, \ldots, \hat{y}_K) \)
 - Total: \(\hat{y}_\star \)

- **Weighted squared loss**

\[
\ell(y, (\hat{y}, \hat{y}_\star)) = \sum_{k=1}^{K} a_k (y_k - \hat{y}_k)^2 + a_\star (y_\star - \hat{y}_\star)^2
\]
Measuring Performance

- Real consumptions
 - Regions: $y = (y_1, \ldots, y_K)$
 - Total: $y_* = y_1 + \ldots + y_K$
- Predictions
 - Regions: $\hat{y} = (\hat{y}_1, \ldots, \hat{y}_K)$
 - Total: \hat{y}_*
- Weighted squared loss

$$
\ell(y, (\hat{y}, \hat{y}_*)) = \sum_{k=1}^{K} a_k (y_k - \hat{y}_k)^2 + a_*(y_* - \hat{y}_*)^2
$$

Weights represent electricity network configurations
For example:

$$
a_k = 1 \text{ for all } k
$$

$$
a_* = K
$$
The Operational Constraint

Prediction for the total
= sum of predictions for the regions

\[\hat{y}_* = \hat{y}_1 + \ldots + \hat{y}_K \]

Imposed, for example, in the Global Energy Forecasting Competition 2012 on Kaggle.com
The Forecasters' Rebellion

- Constraint: $\hat{y}_* = \hat{y}_1 + \ldots + \hat{y}_K$
 - Maybe the total is easier to predict than the regions...
 - What if we have a better predictor for the total consumption?

We don't want this constraint!
A Peace Treaty Allowing a Separation of Concerns

- Forecasters produce *ideal* predictions
 \[\bar{y} = (\bar{y}_1, \ldots, \bar{y}_K, \bar{y}_*) \]
- Map to predictions that satisfy the constraint
 - Regions: \(\hat{y} = (\hat{y}_1, \ldots, \hat{y}_K) \)
 - Total: \(\hat{y}_* = \hat{y}_1 + \ldots + \hat{y}_K \)
Related Work

- Let $z = \bar{y}_* - \sum_k \bar{y}_k$ measure how much we violate the constraint
- HTS [Hyndman et al, 2011]: $\hat{y}_k = \bar{y}_k + \frac{1}{K + 1} z$

- Disadvantages:
 - Designed under probabilistic assumptions about distribution of predictions and consumptions
 - Does not take into account weights a_k of the regions and of the total a_*.
Game-theoretically Optimal Predictions (GTOP)

• Difference between ideal and real loss:

\[\ell(y, \hat{y}) - \ell(y, \bar{y}) \quad (1) \]

where \(\hat{y} = (\hat{y}_1, \ldots, \hat{y}_K, \sum_k \hat{y}_k) \) satisfies the constraint

• Idea: model as a zero-sum game
 - We first choose our predictions \(\hat{y} \)
 - Then an opponent chooses \(y \) to make (1) as large as possible
Game-theoretically Optimal Predictions (GTOP)

- Difference between ideal and real loss:
 \[\ell(y, \hat{y}) - \ell(y, \bar{y}) \quad (1) \]
 where \(\hat{y} = (\hat{y}_1, \ldots, \hat{y}_K, \sum_k \hat{y}_k) \) satisfies the constraint

- Idea: model as a zero-sum game
 - We first choose our predictions \(\hat{y} \)
 - Then an opponent chooses \(y \) to make (1) as large as possible

- No probabilistic assumptions!
Game-theoretically Optimal Predictions (GTOP)

- The optimal move chooses \hat{y} to achieve
 \[
 \min_{\hat{y}} \max_y \{ \ell(y, \hat{y}) - \ell(y, \bar{y}) \}
 \]

- Assume confidence bands:
 \[
 y_k \in [\bar{y}_k - B_k, \bar{y}_k + B_k]
 \]
Game-theoretically Optimal Predictions (GTOP)

- The optimal move chooses \(\hat{y} \) to achieve

\[
\min_{\hat{y}} \max_y \{ \ell(y, \hat{y}) - \ell(y, \bar{y}) \}
\]

- Assume confidence bands:

\[
y_k \in [\bar{y}_k - B_k, \bar{y}_k + B_k]
\]

Example: If \(B_1 = \ldots = B_K = B \) and \(a_1 = \ldots = a_K = a_* \)

\[
\hat{y}_k = \bar{y}_k + \left[\frac{1}{K+1} \bar{z} \right] B
\]

where \(z = \bar{y}_* - \sum_k \bar{y}_k \)

\[
[x]_B = \min \{ B, \max \{-B, x\} \}
\]
Non-uniform Weights: L2-projection

- If confidence bands B_k are sufficiently large:

\[\hat{y}_k = \bar{y}_k + \frac{1/a_k}{1/a_* + \sum_{k'} 1/a_{k'}} z \]

- This is the L2-projection
 - of \bar{y} unto the hyperplane of predictions satisfying summation constraint,
 - with axes rescaled to take into account the region weights a_k, a_*

- In simulations we see that GTOP exactly predicts like this already for very small B_k.
General Computation

- In general no closed-form solution for GTOP, but can rewrite as LASSO optimization problem.
- Size of problem depends on number of regions K
- Standard software to quickly compute LASSO solutions can deal with very large problems; K is typically much smaller
Experiments with Simulated Data

- **K = 2 regions:**
 \[
 y_1 = 1 + 5x + \sigma \xi + \tau \zeta_1 \\
 y_2 = 1 + 5x - \sigma \xi + \tau \zeta_2
 \]

- Noise r.v. \(\xi, \zeta_1, \zeta_2\) are uniform on \([-1, 1]\)
- Parameters \(\sigma, \tau\) control amount of noise

- **Train set:** \(x \in \left\{ \frac{1}{100}, \frac{2}{100}, \ldots, 1 \right\}\)
- **Test set:** \(x \in \left\{ 1 + \frac{1}{100}, 1 + \frac{2}{100}, \ldots, 2 \right\}\)
Ideal Predictions

- For the regions \((\bar{y}_1, \bar{y}_2)\):
 - Fit linear function \(y = \beta_0 + \beta_1 x\) to the data
 - Use LASSO to estimate \(\beta_0, \beta_1\) per region
- For the total \((\bar{y}_*)\), \(\bar{y}_1 + \bar{y}_2\) already very good predictor. How do we do better???
Ideal Predictions

- For the regions \((\bar{y}_1, \bar{y}_2)\):
 - Fit linear function \(y = \beta_0 + \beta_1 x\) to the data
 - Use LASSO to estimate \(\beta_0, \beta_1\) per region

- For the total \((\bar{y}_*), \bar{y}_1 + \bar{y}_2\) already very good predictor. How do we do better???
 - 1. Fit \(y = \beta_0 + \beta_1 x + \beta_2 \bar{y}_1 + \beta_3 \bar{y}_2\) with LASSO
 - 2. Regularize by
 \[|\beta_0| + |\beta_1| + |\beta_2 - 1| + |\beta_3 - 1|\]
 - Behaves like \(\bar{y}_1 + \bar{y}_2\) unless data say otherwise
Results

- GTOP calibration
 - B_k are set to maximum absolute value of residuals on train set
- Loss HTS – loss GTOP summed over test set
Summary

- We want to forecast:
 - Electricity consumption in K regions
 - The total consumption of those regions
- Unpleasant operational constraint:
 - prediction for the total = sum of regional predictions
- Approach:
 - Ignore the constraint to get ideal predictions
 - Use GTOP to adjust ideal predictions to satisfy the constraint
Experiment with EDF data

- The data
 - K = 17 groups of customers
 - Half-hourly energy consumption records
 - Train set: 1 Jan 2004 to 31 Dec 2007
 - Test set: 1 Dec 2008 to 31 Dec 2009

- The model (presented yesterday by Jairo)
 - Non-parametric functional model
 - Based on matching similar contexts in previous observations
Preliminary Results

- GTOP calibration
 - B_k are set heuristically as $0.01 \times y_k$

- Preliminary results
 - Ideal loss of \bar{y} vs GTOP loss
 - Desired outcome: GTOP should not be much worse than \bar{y}
 - GTOP actually reduces the mean loss by 2.5% compared to \bar{y}!