Second-order Quantile Methods for Online Sequential Prediction

Tim van Erven

Joint work with: Wouter Koolen

Benelearn, 19 June 2015
Outline

- Prediction with Expert Advice
 - Setting
 - Standard algorithm (and its limitations)
- Improvements
 - Either second-order bounds
 - Or quantile bounds
- How to get both improvements
- Online shortest path
Sequential Prediction with Expert Advice

- K experts *sequentially* predict data x_1, x_2, \ldots
- Goal: predict (almost) as well as the best expert on average
Sequential Prediction with Expert Advice

- K experts **sequentially** predict data x_1, x_2, \ldots
- Goal: predict (almost) as well as the **best expert** on average
- Applications:
 - online **classification**, e.g. spam detection
 - online convex **optimization**
 - **boosting**
 - **differential privacy**
 - predicting time series like electricity consumption or air pollution levels
Formal Setting

- Every round $t = 1, \ldots, T$:
 1. Predict **probability distribution** w_t on K experts
 2. Observe expert losses $\ell_t^1, \ldots, \ell_t^K \in [0, 1]$
 3. Our expected loss is $\hat{\ell}_t = \mathbb{E}_{w_t(k)}[\ell^k_t]$
Formal Setting

- Every round $t = 1, \ldots, T$:
 1. Predict probability distribution w_t on K experts
 2. Observe expert losses $\ell^1_t, \ldots, \ell^K_t \in [0, 1]$
 3. Our expected loss is $\hat{\ell}_t = \mathbb{E}_{w_t(k)}[\ell^k_t]$

- Goal: small regret for every expert k

$$R^k_T = \sum_{t=1}^{T} \hat{\ell}_t - \sum_{t=1}^{T} \ell^k_t$$
Standard Algorithm

- **Exponential weights** with **prior** π:

 $$w_t(k) = \frac{\pi(k)e^{\eta R_{t-1}^k}}{\text{normalisation}}$$

- **learning rate** η is a parameter
 - large η: aggressive learning
 - small η: conservative learning
Standard Algorithm

- **Exponential weights with prior** \(\pi \):
 \[
 w_t(k) = \frac{\pi(k)e^{\eta R_{t-1}^k}}{\text{normalisation}}
 \]

- **Learning rate** \(\eta \) is a parameter
 - large \(\eta \): aggressive learning
 - small \(\eta \): conservative learning

- \(w_t \) is gradient of potential function
 \[
 \ln \sum_k \pi(k)e^{\eta R_{t-1}^k}
 \]
Basic Regret Guarantee

- For learning rate $\eta = \sqrt{8 \ln(K)/T}$

$$R^k_T < \sqrt{T \ln(K)}$$ for all experts k

- Average regret per round goes to 0
- T does not measure inherent difficulty
- $\ln(K)$ does not count effective nr of experts
Outline

• Prediction with Expert Advice
 – Setting
 – Standard algorithm (and its limitations)

• Improvements
 – Either second-order bounds
 – Or quantile bounds

• How to get both improvements

• Online shortest path
Improvement 1: Second-order Bounds

\[R_T^k < \sqrt{T \ln(K)} \]

- \(T \) simply counts nr of rounds
- Want to replace by some measure of the variance in the losses
- Different proposals [Cesa-Bianchi, Mansour, Stoltz, 2007], [Hazan, Kale, 2010], [Gaillard, Stoltz, vE, 2014]

\[V_T^k := \sum_{t=1}^{T} (\hat{\ell}_t - \ell_t^k)^2 \]
Improvement 1: Second-order Bounds

\[R_T^k \prec \sqrt{V_T^k \ln(K)} \]

- Different specialized algorithms
- Different clever tricks to choose learning rate adaptively over time

[Cesa-Bianchi, Mansour, Stoltz, 2007], [Hazan, Kale, 2010], [Gaillard, Stoltz, vE, 2014]
Improvement 2: Quantile Bounds

\[R_T^k \lesssim \sqrt{T \ln(K)} \]

- \(\ln(K) \) is nr. of bits to identify best expert
- But suppose multiple experts \(\mathcal{K} \subset \{1, \ldots, K\} \) are all good
- Want to replace by

\[\ln \frac{1}{\pi(\mathcal{K})} \]

for prior \(\pi \) on experts

[Chaudhuri, Freund, Hsu, 2009]
Improvement 2: Quantile Bounds

\[R_T^K \leq \sqrt{T \ln \frac{1}{\pi(\mathcal{K})}} \]

- \(R_T^K = \min_{k \in \mathcal{K}} R_T^k \) good when all \(k \in \mathcal{K} \) good
- Specialized algorithms
- Clever tricks to choose learning rate adaptively over time

[Chaudhuri, Freund, Hsu, 2009]
Both Improvements: Second-order Quantile Bounds?

\[R_T^\mathcal{K} \lesssim \sqrt{V_T^\mathcal{K} \ln \frac{1}{\pi(\mathcal{K})}} \]

- Different specialized algorithms
- Incompatible clever tricks to tune learning rate

Need something simple!
Outline

● Prediction with Expert Advice
 – Setting
 – Standard algorithm (and its limitations)
● Improvements
 – Either second-order bounds
 – Or quantile bounds
● How to get both improvements
● Online shortest path
New Algorithm

• Exponential weights with prior π:

$$w_t(k) = \frac{\pi(k)e^{\eta R_t^k}}{\text{normalisation}}$$

• 1. Incorporate variance:

$$w_t(k) = \frac{\pi(k)e^{\eta R_t^k - \eta^2 V_t^k}}{\text{normalisation}}$$
New Algorithm

- **Exponential weights with prior** π:

$$ w_t(k) = \frac{\pi(k) e^{\eta R_t^k}}{\text{normalisation}} $$

- **2. Add prior on learning rates:**

$$ w_t(k) = \frac{\int \gamma(\eta) \pi(k) e^{\eta R_t^k - \eta^2 V_t^k} \eta \, d\eta}{\text{normalisation}} $$
New Regret Bound

Thm. Any \(\pi(k) \), right choice of \(\gamma(\eta) \) achieves

\[
R_T^\mathcal{K} < \sqrt{V_T^\mathcal{K} \left(\ln \frac{1}{\pi(\mathcal{K})} + \ln \ln T \right)}
\]

for all \(\mathcal{K} \)

- Averages under the prior instead of worst in \(\mathcal{K} \):

\[
R_T^\mathcal{K} = \mathbb{E}_{\pi(k|\mathcal{K})} [R_T^k] \quad V_T^\mathcal{K} = \mathbb{E}_{\pi(k|\mathcal{K})} [V_T^k]
\]
New Regret Bound

Thm. Any $\pi(k)$, right choice of $\gamma(\eta)$ achieves

$$R_T^K \prec \sqrt{V_T^K} \left(\ln \frac{1}{\pi(K)} + \ln \ln T \right)$$

for all K

- **Averages** under the prior instead of worst in K:

 $$R_T^K = \mathbb{E}_{\pi(k|K)}[R_T^k] \quad V_T^K = \mathbb{E}_{\pi(k|K)}[V_T^k]$$

- If $T = \text{age of universe in \mu s}$: $\ln \ln T < 4$
Outline

- Prediction with Expert Advice
 - Setting
 - Standard algorithm (and its limitations)
- Improvements
 - Either second-order bounds
 - Or quantile bounds
- How to get both improvements
- Online shortest path
Learn Shortest Path in a Graph

- Every round t, each edge incurs loss
- ν: best distribution on paths
- Goal: learn ν

$$R_T^\nu < \sqrt{V_T^\nu} \left(\text{complexity}(\nu) + K \ln \ln \ln T \right)$$
Summary

- Improvements over standard exponential weights algorithm:
 - Either second-order bounds
 - Or quantile bounds
- New algorithm gets both improvements
 - Surprisingly simple generalization of exponential weights
- Extension to online shortest path
 (for other combinatorial problems, come to poster)