From **Data Compression** to
Online Machine Learning

Tim van Erven

Based on joint work with:
Wouter Koolen, Peter Grünwald
Outline

- The end: online convex optimization for machine learning
- The beginning: data compression and universal coding via sequential predictions
- Sequential predictions for general losses
- Online Convex Optimization
Machine Learning Examples

Image Classification

Forecasting Electricity Consumption

Cancer Research

E-mail Spam Detection
Machine Learning

- Training data: \[
\begin{pmatrix}
Y_1 \\
X_1
\end{pmatrix}, \ldots, \begin{pmatrix}
Y_n \\
X_n
\end{pmatrix}
\]

- Many parameters: \(\mathbf{v} = (v^1, \ldots, v^d) \)

- Optimize performance on training data:

\[
\min_{\mathbf{v}} f_1(\mathbf{v}) + \ldots + f_n(\mathbf{v})
\]

where \(f_t \) measures the loss/error on \[
\begin{pmatrix}
Y_t \\
X_t
\end{pmatrix}
\]

e.g. logistic loss: \(f_t(\mathbf{v}) = \log(1 + e^{-Y_t\langle \mathbf{v}, X_t \rangle}) \)
Machine Learning

- Training data:
- Many parameters:
- Optimize performance on training data:

Problems for **big data**:
- Data does not fit in **memory** at once
- Want to **update fast** on extra data

$$\min_{\mathbf{v}} \ f_1(\mathbf{v}) + \ldots + f_n(\mathbf{v})$$

where f_t measures the loss/error on $(Y_t \ X_t)$

e.g. logistic loss: $f_t(\mathbf{v}) = \log(1 + e^{-Y_t \langle \mathbf{v}, \mathbf{X}_t \rangle})$
Online Convex Optimization

- **Convex** functions $f_1(v), \ldots, f_n(v)$
- Process data sequentially:
 Continuously improve parameters v
 by looking at **one function** f_t at a time
Online Gradient Descent

Initialize parameters

Loss

Parameters ν
Online Gradient Descent

Round 1

\[f_1(v_1) \]

Parameters \(v \)
Online Gradient Descent

Round 1

Move in direction of steepest descent
(step size controlled by parameter η)
Online Gradient Descent

Round 2

Move in direction of steepest descent (step size controlled by parameter η)
Online Gradient Descent

Round 3

Move in direction of steepest descent (step size controlled by parameter η)
What does this have to do with information theory?
Outline

- The end: online convex optimization for machine learning
- The beginning: data compression and universal coding via sequential predictions
- Sequential predictions for general losses
- Online Convex Optimization
Data Compression via Sequential Prediction

- Data: X_1, \ldots, X_n
- Encode in sequential pass through the data
- For $t = 1, \ldots, n$:
 - Predict X_t by distribution \hat{P}_t
 - Encode X_t with $-\log \hat{P}_t(X_t)$ bits
- \hat{P}_t depends only on previous data X_1, \ldots, X_{t-1}
- Efficient algorithm: arithmetic coding
Universal Coding

- Suppose we have K prediction strategies/codes P_t^1, \ldots, P_t^K.
- How to predict/code (nearly) as well as the best one?

- **Regret** = our codelength – codelength of best

$$ \text{Regret} = \sum_{t=1}^{n} - \log \hat{P}_t(X_t) - \min_k \sum_{t=1}^{n} - \log P_t^k(X_t) $$
Bayesian Predictions for Universal Coding

- Start with uniform prior distribution \(w_1(k) = \frac{1}{K} \) on \(K \) prediction strategies
- Predict with Bayes predictive distribution, which mixes strategies

\[
\hat{P}_t(X_t) = \Pr(X_t|X_1, \ldots, X_{t-1}) = \sum_{k=1}^{K} w_t(k) P_t^k(X_t)
\]

according to posterior probabilities

\[
w_t(k) = \frac{w_1(k) \prod_{s=1}^{t-1} P_s^k(X_s)}{\text{normalization}}
\]
Regret Bound for Bayesian Predictions

- **Regret** = our codelength – codelength of best
 \[\sum_{t=1}^{n} - \log \hat{P}_t(X_t) - \min_k \sum_{t=1}^{n} - \log P_t^k(X_t) \leq \log K \]

- **Proof**: let \(k^* \) be the best strategy. Then our predictions satisfy

 \[
 \prod_{t=1}^{n} \hat{P}_t(X_t) = \prod_{t=1}^{n} \Pr(X_t|X_1, \ldots, X_{t-1}) = \Pr(X_{1:n}) \\
 = \sum_{k=1}^{k} w_1(k) \Pr(X_{1:n}|k) \geq w_1(k^*) \Pr(X_{1:n}|k^*) = \frac{1}{K} \prod_{t=1}^{n} P_t^{k^*}(X_t)
 \]
Outline

- The end: online convex optimization for machine learning
- The beginning: data compression and universal coding via sequential predictions
- **Sequential predictions for general losses:**
 - Log loss = data compression
 - Exp-concave losses
 - Linear loss
- Online Convex Optimization
Sequential Prediction for General Losses

- Suppose we have K prediction strategies that make predictions p_t^1, \ldots, p_t^K in round t
- Do not have to be probabilities

- For $t = 1, \ldots, n$:
 - Predict \hat{p}_t
 - $\text{loss}_t(p)$ measures loss of p on outcome X_t

- Regret = $\sum_{t=1}^{n} \text{loss}_t(\hat{p}_t) - \min_k \sum_{t=1}^{n} \text{loss}_t(p_t^k)$
Sequential Prediction for General Losses

- Suppose we have K prediction strategies that make predictions \hat{p}_t in round t.
- Do not have to be probabilities.
- For $t = 1, \ldots, n$:
 - Predict \hat{p}_t
 - $\text{loss}_t(p)$ measures loss of p on outcome X_t

Data compression:
- Predictions are prob. distributions
- $\text{loss}_t(p) = -\log p(X_t)$ is log loss

Regression:
- Predictions are numbers
- $\text{loss}_t(p) = (X_t - p)^2$ is squared error

Regret = $\sum_{t=1}^{n} \text{loss}_t(\hat{p}_t) - \min_k \sum_{t=1}^{n} \text{loss}_t(p^*_t)$
Outline

• The end: online convex optimization for machine learning
• The beginning: data compression and universal coding via sequential predictions
• Sequential predictions for general losses:
 – Log loss = data compression
 – Exp-concave losses
 – Linear loss
• Online Convex Optimization
Exp-concave Losses

• Losses such that
 \[e^{-\eta \text{loss}_t(p)} \]
 is concave in our prediction \(p \) for some \(\eta > 0 \)

• Log loss: \(e^{-\text{loss}_t(p)} = p(X_t) \)
 - linear in \(p \) for \(\eta = 1 \)

• Squared error: \(e^{-\eta (X_t - p)^2} \)
 - \(\eta = \frac{1}{8} \) if \(X_t, p \in [-1, +1] \)
Exp-concave Losses

- Losses such that
 \[e^{-\eta \text{loss}_t(p)} \]
 is \textit{concave} in our prediction \(p \) for some \(\eta > 0 \)

- \textbf{Log loss}: \(e^{-\text{loss}_t(p)} = p(X_t) \)
 - linear in \(p \) for \(\eta = 1 \)
- \textbf{Squared error}: \(e^{-\eta (X_t - p)^2} \)
 - \(\eta = \frac{1}{8} \) if \(X_t, p \in [-1, +1] \)

Behaves much like a probability
Exp-concavity allows mixing “probabilities”

- If we mix predictions according to some weights:

\[\hat{p}_t = \sum_{k=1}^{K} w_t(k)p^k_t \]

- Then our “probability” is at least the mixture of the “probabilities” we are mixing:

\[e^{-\eta \text{loss}_t(\hat{p}_t)} \geq \sum_{k=1}^{K} w_t(k)e^{-\eta \text{loss}_t(p^k_t)} \]
Exponential Weights Predictions

- Predict with Bayesian predictions, which mix strategies

\[
\hat{p}_t = \sum_{k=1}^{K} w_t(k)p_t^k
\]

according to posterior weights

\[
w_t(k) = \frac{w_1(k) \prod_{s=1}^{t-1} p_s^k(X_s)}{\text{normalization}}
\]
Exponential Weights Predictions

- Predict with Bayesian predictions, which mix strategies

\[\hat{p}_t = \sum_{k=1}^{K} w_t(k) p_t^k \]

according to posterior weights

\[w_t(k) = \frac{w_1(k) \prod_{s=1}^{t-1} e^{-\eta \text{loss}_s(p_s^k)}}{\text{normalization}} \]
Regret for Exp-Concave Losses

- **Regret** = our total loss – loss of best strategy

\[
\sum_{t=1}^{n} \text{loss}_t(\hat{p}_t) - \min_k \sum_{t=1}^{n} \text{loss}_t(p_t^k) \leq \frac{\log K}{\eta}
\]

- **Proof:** same steps as for log loss give

\[
\sum_{t=1}^{n} \eta \text{loss}_t(\hat{p}_t) \leq \sum_{t=1}^{n} \eta \text{loss}_t(p_t^{k^*}) + \log K
\]
Outline

- The end: online convex optimization for machine learning
- The beginning: data compression and universal coding via sequential predictions
- Sequential predictions for general losses:
 - Log loss = data compression
 - Exp-concave losses
 - Linear loss
- Online Convex Optimization
Linear Loss

- Predict with a **mix** of K prediction strategies:

\[\hat{p}_t = \sum_{k=1}^{K} w_t(k)p_t^k \]

- Loss is **linear in the mixing weights**:

\[\text{loss}_t(w_t) = \sum_{k=1}^{K} w_t(k)\ell_t^k \]

where \(\ell_t^k \) is the loss of using strategy k (can be anything)

- Example: strategies classify emails as spam or not spam

\[\ell_t^k = \begin{cases}
1 & \text{if strategy k makes mistake on t-th e-mail,} \\
0 & \text{otherwise}
\end{cases} \]
Regret for Linear Loss

- Can approximate linear loss by an exp-concave loss $m_t(w)$ with parameter η
- Approximation error: $\eta/8$ per round (if $\ell_t^k \in [0, 1]$)
- Exponential weights algorithm with $\eta = \sqrt{\frac{8 \log(K)}{n}}$

\[
\text{Regret} \leq \frac{\log K}{\eta} + \frac{n\eta}{8} = \sqrt{n \log(K)/2}
\]

$m_t(w) = -\frac{1}{n} \log \sum_k w(k) e^{-n\ell_t^k}$
Outline

• The end: online convex optimization for machine learning
• The beginning: data compression and universal coding via sequential predictions
• Sequential predictions for general losses
• **Online Convex Optimization**
 - Linear optimization
 - Convex optimization
Online Linear Optimization

- Linear loss with an **infinite** number of comparison strategies $\mathbf{v} \in \mathbb{R}^d$
- Loss of \mathbf{v} in round t is
 \[\ell_t^\mathbf{v} = \langle \mathbf{v}, \mathbf{c}_t \rangle \quad \text{for some costs } \mathbf{c}_t \in \mathbb{R}^d \]
- Our loss with weights $w_t(\mathbf{v})$ is
 \[\text{loss}_t(w_t) = \langle \mathbf{\mu}_t, \mathbf{c}_t \rangle \]
 where $\mathbf{\mu}_t = \mathbb{E}_{w_t(\mathbf{v})}[\mathbf{v}]$ is the mean of w_t
Exponential Weights

- Exponential weights with **Gaussian prior**

\[w_1 = \mathcal{N}(0, I) \]

gives **Gaussian posterior weights**

\[
 w_t(v) = \frac{w_1(v) \prod_{s=1}^{t-1} e^{-\eta \langle v, c_s \rangle}}{\text{normalization}} = \mathcal{N}(\mu_t, I)
\]

with **mean**

\[\mu_t = -\eta \sum_{s=1}^{t-1} c_s \]
Regret for Linear Optimization

- Thm: If $\|c_t\| \leq 1$ for all t. Then the regret of exponential weights with

$$\eta = \sqrt{\frac{B^2}{n}}$$

with respect to all v s.t. $\|v\| \leq B$ is at most

$$\text{Regret} \leq \sqrt{2B^2n}$$

- Essentially same analysis as for finite number of comparison strategies
Outline

• The end: online convex optimization for machine learning
• The beginning: data compression and universal coding via sequential predictions
• Sequential predictions for general losses
• Online Convex Optimization
 – Linear optimization
 – Convex optimization
Machine Learning

- Training data: \(\left(\begin{array}{c} Y_1 \\ X_1 \end{array} \right), \ldots, \left(\begin{array}{c} Y_n \\ X_n \end{array} \right) \)

- Many parameters: \(\mathbf{v} = (v^1, \ldots, v^d) \)

- Optimize performance on training data:

\[
\min_{\mathbf{v}} \ f_1(\mathbf{v}) + \ldots + f_n(\mathbf{v})
\]

where \(f_t \) measures the loss/error on \(\left(\begin{array}{c} Y_t \\ X_t \end{array} \right) \)

- e.g. logistic loss: \(f_t(\mathbf{v}) = \log(1 + e^{-Y_t \langle \mathbf{v}, X_t \rangle}) \)
Online Convex Optimization

- **Loss of** $\nu \in \mathbb{R}^d$ in round t is
 \[\ell_t^\nu = f_t(\nu) \text{ for convex } f_t \]

- **Our loss with weights** $w_t(\nu)$ is
 \[\text{loss}_t(w_t) = f_t(\mu_t) \]

- **Regret** is
 \[\sum_{t=1}^{n} f_t(\mu_t) - \min_{\nu} \sum_{t=1}^{n} f_t(\nu) \]
Reduction to Linear Optimization

\[f_t(\nu) \]
Reduction to Linear Optimization

Approximate convex orange by linear blue

\[\tilde{f}_t(v) = f_t(\mu_t) + \langle (v - \mu_t), \nabla f_t(\mu_t) \rangle \]
Exponential Weights becomes Gradient Descent

- Effect of **linear approximation**:

\[c_t = \nabla f_t(\mu_t) \]

- Mean of exponential weights becomes

\[\mu_t = -\eta \sum_{s=1}^{t-1} \nabla f_s(\mu_s) = \mu_{t-1} - \eta \nabla f_{t-1}(\mu_{t-1}) \]

which is exactly **gradient descent**!
Regret for Convex Optimization

- Thm: If $\|\nabla f_t(\mu_t)\| \leq 1$ for all t. Then the regret of exponential weights = gradient descent with

$$\eta = \sqrt{\frac{B^2}{n}}$$

with respect to all ν s.t. $\|\nu\| \leq B$ is at most

$$\sum_{t=1}^{n} f_t(\mu_t) - \min_{\nu: \|\nu\| \leq B} \sum_{t=1}^{n} f_t(\nu) \leq \sqrt{2B^2n}$$
Summary

- **Generalize universal coding** to:
 - sequential prediction with general losses
 - online convex optimization
 (for machine learning)

- **Same algorithm** everywhere:
 - Bayesian posterior weights (universal coding)
 - Exponential weights
 - Online gradient descent
Recent Developments

Joint work with Wouter Koolen

- Exponential weights/gradient descent:
 - Tune parameter η to optimize bound

- New algorithm 'Squint':
 - Improved exponential weights for sequential prediction with linear losses
 - Automatically learns optimal parameter η for the data
 - Replaces \sqrt{n} by variance measure $\sqrt{V} \ll \sqrt{n}$

- Work in progress: transfer results to the online convex optimization setting
References

• **Standard textbook on online learning:** Cesa-Bianchi and Lugosi. *Prediction, learning, and games*. 2006.
