The Minimum Description Length Principle

Peter Grünwald
CWI Amsterdam
www.grunwald.nl
(slides edited by Tim van Erven)

Machine Learning Course,
Vrije Universiteit Amsterdam
December 5th 2007
Minimum Description Length Principle

• ‘MDL’ is a method for inductive inference…
 – machine learning
 – pattern recognition
 – statistics

• …based on ideas from data compression (information theory)

• In contrast to most other methods, MDL automatically deals with overfitting, arguably the central problem in machine learning and statistics
Minimum Description Length Principle

• MDL is based on the correspondence between ‘regularity’ and ‘compression’:
 – The more you are able to **compress** a sequence of data, the more **regularity** you have detected in the data
 – Example:

 001001001001001001001001001001001:...:001
 010110111001001110100010101:...:010
Minimum Description Length Principle

• MDL is based on the correspondence between ‘regularity’ and ‘compression’:
 – The more you are able to **compress** a sequence of data, the more **regularity** you have detected in the data…
 – …and thus the more you have **learned** from the data:
 • ‘inductive inference’ as trying to find regularities in data (and using those to make predictions of future data)
Model Selection/Overfitting

Given data D and hypothesis spaces/models M_1, M_2, M_3, \ldots, which model best explains the data?

- Need to take into account
 - Complexity of models
 - Error (minus Goodness-of-fit)

- Example:
 - Selecting the degree of a polynomial in regression
 - Sum of squared errors
Example: Regression
Example: Regression
Example: Regression
Example: Regression