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Machine Learning 2007: Lecture 5

Instructor: Tim van Erven (Tim.van.Erven@cwi.nl)
Website: www.cwi.nl/˜erven/teaching/0708/ml/

October 4, 2007

www.cwi.nl/~erven/teaching/0708/ml/
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● Don’t work in pairs, unless explicitly allowed.
● Make sure your blackboard e-mailaddress works (I cannot

change it) and that you read it.
● If you absolutely cannot attend the final exam, mail me.
● Exercise 2.1:

H = {〈?, ?, ?, ?, ?, ?〉, 〈Sunny, ?, ?, ?, ?, ?〉,

〈Warm, ?, ?, ?, ?, ?〉, . . . , 〈∅, ∅, ∅, ∅, ∅, ∅〉}

should be

H = {〈?, ?, ?, ?, ?, ?〉, 〈Sunny, ?, ?, ?, ?, ?〉,

〈Cloudy, ?, ?, ?, ?, ?〉, . . . , 〈∅, ∅, ∅, ∅, ∅, ∅〉}
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Mitchell:

● Read: Chapter 3 of Mitchell.

This Lecture:

● More background on probability distributions and random
variables.

● More about information theory than in Mitchell.
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Given sample space Ω = {ω1, . . . , ωk} a probability mass
function p(ωi) is a function that assigns a weight to each
outcome ωi such that

● 0 ≤ p(ωi) ≤ 1
● p(ω1) + . . . + p(ωk) = 1.

This mass function uniquely defines a probability distribution
P (E) that assigns probability

P (E) =
∑

{i|ωi∈E}

p(ωi)

to any event E ⊆ Ω.
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Getting New Information:

● Let P be a probability distribution on sample space Ω.
● Suppose we are given the information that we will get an

outcome in E2 ⊆ Ω.
● How should we update P to take this into account?
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Getting New Information:

● Let P be a probability distribution on sample space Ω.
● Suppose we are given the information that we will get an

outcome in E2 ⊆ Ω.
● How should we update P to take this into account?

The Conditional Distribution:

● Make a new conditional distribution P (E1 | E2) on Ω.
● The conditional probability of event E1 ⊆ Ω is:

P (E1 | E2) =
P (E1 ∩ E2)

P (E2)
,

(assuming P (E2) > 0).
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Given sample space Ω = {ω1, . . . , ωk}, a random variable X
assigns a number X(ω) to each outcome ω ∈ Ω: It is a function
from Ω to R.

Example:

Suppose Ω = {HH, HT, TH, TT} describes the possible outcomes
of two coin flips (H = heads; T = tails). Then we might define a
random variable that counts the number of heads:

ω X(ω)

HH 2
HT 1
TH 1
TT 0
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A Loaded Die:

● We roll a die n times and get data D = y1, . . ., yn.
● For example D = 6, 2, 6, 6, 6, 3, 6.
● We consider it possible that the die has been loaded: Some

sides may have been made heavier than others.
● How do we describe the statistical regularity in our data?
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A Loaded Die:

● We roll a die n times and get data D = y1, . . ., yn.
● For example D = 6, 2, 6, 6, 6, 3, 6.
● We consider it possible that the die has been loaded: Some

sides may have been made heavier than others.
● How do we describe the statistical regularity in our data?

Describing the Die Using a Distribution:

● View each throw as an outcome y from sample space
Ω = {1, 2, 3, 4, 5, 6}. The probability distribution P of y
depends on the die.

● For example, if the die has not been loaded, then P assigns
the same probability 1/6 to all outcomes.
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Motivation:

● Suppose we get data D = y1, . . . , yn, where each yi has the
same probability distribution P .

● We want to predict P (yn+1 = 6).
● But we don’t know P ! We only see the data.
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Motivation:

● Suppose we get data D = y1, . . . , yn, where each yi has the
same probability distribution P .

● We want to predict P (yn+1 = 6).
● But we don’t know P ! We only see the data.

Estimating the Probability of an Event:

● Then if we have a lot of data (n is large), we can estimate the
probability P of any event E by the relative frequency of the
occurrence of the event in D.

● For example, suppose D = 6, 2, 6, 6, 6, 3, 6. Then our estimate
of P (y = 6) will be 5/7.
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Set-up: Alice sends information to Bob over a (possibly noisy)
communication channel, for example a telegraph line.
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Set-up: Alice sends information to Bob over a (possibly noisy)
communication channel, for example a telegraph line.

Important Concepts (informally):

● Entropy H(X) of random variable X: minimum expected
number of binary questions needed to determine X(ω).

● Mutual information I(X;Y ) of X and Y : How much
information do we get about X(ω) by being told Y (ω)?
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Set-up: Alice sends information to Bob over a (possibly noisy)
communication channel, for example a telegraph line.

Important Concepts (informally):

● Entropy H(X) of random variable X: minimum expected
number of binary questions needed to determine X(ω).

● Mutual information I(X;Y ) of X and Y : How much
information do we get about X(ω) by being told Y (ω)?

History:

● Until the early 1940s people thought that increasing the
transmission rate of information over a communication
channel increases the probability of error.

● Then C.E. Shannon showed that this is not true as long as
the communication rate is below the channel capacity C,
which is defined using mutual information.
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Definition:

The entropy H(X) of a random variable X is defined as

H(X) =
∑

x

P (X = x) · (− log2 P (X = x)),

where x ranges over the possible values of X(ω).
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Definition:

The entropy H(X) of a random variable X is defined as

H(X) =
∑

x

P (X = x) · (− log2 P (X = x)),

where x ranges over the possible values of X(ω).

Remarks:

● Entropy can be interpreted as the minimum expected number
of binary questions needed to determine X(ω).

● Hence it measures our uncertainty about X(ω).
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Definition:

The entropy H(X) of a random variable X is defined as

H(X) =
∑

x

P (X = x) · (− log2 P (X = x)),

where x ranges over the possible values of X(ω).

Remarks:

● Entropy can be interpreted as the minimum expected number
of binary questions needed to determine X(ω).

● Hence it measures our uncertainty about X(ω).
● Note that if P (X = x) = 0, then

P (X = x) · (− log2 P (X = x)) = 0 log2 0 is undefined. We
therefore define 0 log2 0 = 0.

● Mitchell uses estimated values for P (X = x).
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● Suppose

x P (X = x)

0 1/4
1 1/2
2 1/4
3 0

● Then

H(X) = P (X = 0) · − log2 P (X = 0)

+ P (X = 1) · − log2 P (X = 1)

+ P (X = 2) · − log2 P (X = 2)

+ P (X = 3) · − log2 P (X = 3)

= 1/4 · 2 + 1/2 · 1 + 1/4 · 2 + 0 log2 0

= 1.5
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Suppose X and Y are random variables.

Known Y (ω):
Suppose we have been told that Y (ω) = y. Then we should use
the conditional distribution P (X | Y (ω) = y) to compute the
entropy of X:

H(X|Y = y) =
∑

x

P (X = x|Y = y) · (− log2 P (X = x|Y = y)).

Definition of Conditional Entropy:

The conditional entropy H(X|Y ) of X given Y is defined as

H(X|Y ) =
∑

y

P (Y = y)H(X|Y = y),

where y ranges over the possible values of Y (ω).
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Definition:

The mutual information I(X;Y ) between random variables X and
Y is defined as

I(X;Y ) = H(X) − H(X | Y )

Remarks:

● I(X;Y ) may be interpreted as the expected reduction in our
uncertainty about X(ω) by hearing the value of Y (ω).

● This is the amount of information we get about the value of
X(ω) by being told the value of Y (ω).
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Suppose Ω = {HH, HT, TH, TT} and P assigns the same
probability (1/4) to all outcomes. Let X count the number of
heads and Y indicate whether the first and the second outcome
are the same:

ω X(ω) Y (ω)

HH 2 0
HT 1 1
TH 1 1
TT 0 0

I(X;Y ) = H(X) − H(X | Y )

= 1.5 − P (Y = 0)H(X|Y = 0)

− P (Y = 1)H(X|Y = 1)

= 1.5 − (1/2 · 1 + 1/2 · 0) = 1
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General:

● Learns a decision tree from data.
● Hence does classification.

Main Ideas:

1. Start by selecting a root attribute for the tree.
2. Then grow the tree by adding more and more attributes to it.
3. Stop growing the tree when it is consistent with all the data.
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D = data; Da,v = data such that x has value v for attribute xa;
A = set of available features/attributes

ID3(D, A)
1: z = the most common label y in D
2: if y is the same for all examples in D or A = ∅ then
3: return T = ({z}, ∅)
4:
5: Select the ‘best’ attribute a ∈ A with values v1, . . ., vk.

6: Ti =

{

({z}, ∅) if Da,vi
= ∅

ID3(Da,vi
, A \ {a}) otherwise

7: return
t1

T1

tk

Tk

a
v1 vk
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● In classification an outcome is
(

y
x

)

∈ Ω = X × Y.

● For each attribute a, we define a random variable Xa that
gives the value of the attribute:

Xa

((

y
x

))

= xa.

● Likewise, we define a random variable Y that gives the value
of the label:

Y

((

y
x

))

= y.
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The ‘Best’ Attribute:

ID3 selects the attribute a that gives the most information about
the label:

max
a

I(Y ;Xa)
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The ‘Best’ Attribute:

ID3 selects the attribute a that gives the most information about
the label:

max
a

I(Y ;Xa)

It Has to Estimate Probabilities:

To compute I(Y ;Xa), ID3 has to estimate P (Y = y), P (Xa = v),
and P (Y = y | Xa = v) for all possible labels y and values v of
attribute a.

Remarks:

● Mitchell calls the mutual information with estimated
probabilities the information gain .
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The Inductive Bias of ID3:

● Smaller decision trees are preferred over bigger decision
trees.

● Trees that place attributes that give the most information
about the labels close to the root are preferred over trees that
do not.

● (When) does a preference for shorter trees make sense?
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Originally:

The fourteenth century logician and natural philosopher William
of Ockham stated:

“What can be explained with fewer things is vainly
explained with more.”

Remarks:

● This inductive bias is applied informally throughout the
sciences: physicists prefer simpler explanations for the
motions of the planets over more complex explanations.

● As Mitchell puts it: Prefer the simplest hypothesis (e.g the one
with the smallest decision tree) that fits the data.

● ID3 follows Occam’s razor if we think that smaller decision
trees are simpler than bigger decision trees.
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A Motivation of Occam’s Razor:

● There are fewer simple hypotheses than complex hypotheses
(e.g. fewer small decision trees than big decision trees)

● It is therefore less likely to be a coincidence when a simple
hypothesis fits the training data well.

Dependence on the Language for Hypotheses:

● The same hypothesis in the EnjoySport example can be
represented in different ways:

✦ A list of constraints: 〈Sunny, ?, ?, ?, ?, ?〉
✦ A decision tree: Sky

Sunny
Cloudy

Rainy

Yes No No

● What appears simpler in one representation may look more
complex in another, and vice versa.
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Doubts:

● Occam’s razor depends on the language we use to describe
hypotheses.

● Without knowing the language, Occam’s razor is too
imprecise: What is simple?
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Doubts:

● Occam’s razor depends on the language we use to describe
hypotheses.

● Without knowing the language, Occam’s razor is too
imprecise: What is simple?

Encouraging Thoughts:

● Occam’s razor makes sense if our language for describing
hypotheses is such that simpler hypotheses are better than
more complex hypotheses.

● Hence if we accept Occam’s razor, then we still have to
specify our inductive bias by choosing a language for
hypotheses.



Conclusions

Organisational
Matters

Probability
Distributions and
Random Variables

Estimating
Probabilities

Information Theory

The ‘Best’ Attribute in
ID3

Occam’s Razor

28 / 30

Doubts:

● Occam’s razor depends on the language we use to describe
hypotheses.

● Without knowing the language, Occam’s razor is too
imprecise: What is simple?

Encouraging Thoughts:

● Occam’s razor makes sense if our language for describing
hypotheses is such that simpler hypotheses are better than
more complex hypotheses.

● Hence if we accept Occam’s razor, then we still have to
specify our inductive bias by choosing a language for
hypotheses.

● Maybe that is not such a bad way to specify inductive bias.
● This idea is formalised by the minimum description length

principle, which turns out to have many elegant properties.
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