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Abstract

In sequential prediction (online learning) with expert advice the goal
is to predict a sequence of outcomes almost as well as the best advisor
from a pool of experts. The quality of predictions is measured by a loss
function, which is determined by the application one has in mind. For
most loss functions, the best performance that can be guaranteed is to be
within O(

√
T ) of the best expert on T outcomes, but for some special loss

functions O(1) overhead is possible.
In the 1990’s, people familiar with the work of Vovk called these special

loss functions mixable losses, but nowadays the notion of mixability ap-
pears to be mostly forgotten, and the geometric concept of exp-concavity
has taken its place. This raises the question of how the two are related,
which strangely does not appear to be answered in very much detail in
the literature. As I have been studying mixability quite a bit in my recent
work, I was wondering about this, so here are some thoughts. Update:
In particular, I will construct a parameterization of the squared loss in
which it is 1/2-exp-concave instead of only 1/8-exp-concave like in its
usual parameterization.

1 Mixability and Exp-concavity

Suppose we predict an outcome y ∈ Y by specifying a prediction a ∈ A. The
better our prediction, the smaller our loss `(y, a). (I will assume `(y, a) is
nonnegative, but that does not really matter.) For example, if y and a both
take values in {0, 1}, then the 0/1-loss `(y, a) = |y−a| is 0 if we predict correctly
and 1 otherwise. Alternatively, if y and a are both real-valued, then the squared
loss is `(y, a) = (y − a)2. And finally, if a specifies a probability density fa on
Y, then our loss may be the log loss `(y, a) = − ln fa(y).

Mixability For η > 0, a loss function is called η-mixable [1] if for any proba-
bility distribution π on A there exists a prediction aπ ∈ A such that

e−η`(y,aπ) ≥
∫
e−η`(y,a)π(da) for all y ∈ Y. (1)

The constant in the O(1) overhead compared to the best expert is proportional
to 1/η, so the bigger η the better.
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Exp-concavity For η > 0, a loss function is called η-exp-concave if for any
distribution π on A the prediction aπ =

∫
a π(da) satisfies (1).

So exp-concavity is just mixability with aπ fixed to be the mean. This
choice is appropriate in the case of log loss. In this case, for η = 1, the numbers
e−η`(y,a) = fa(y) just equal probability densities and (1) holds with equality.

For squared loss, however, the appropriate choice for aπ is not the mean.
Suppose that y and a both take values in [−1,+1]. Then, while the squared loss

is 1/2-mixable for aπ =
h1/2(−1)−h1/2(1)

4 with hη(y) = −1
η ln

∫
e−η(y−a)

2

π(da), it

is only 1/8-exp-concave when parameterized by a. (See [2, 3].) This does not
rule out, however, that the squared loss might be 1/2-exp-concave in a different
parameterization. As we shall see, such a parameterization indeed exists if we
restrict y to take only two values {−1,+1}, but I have not been able to find a
suitable reparameterization in general.

2 Relations

Clearly, exp-concavity implies mixability: it just makes the choice for aπ explicit.
What is not so obvious, is when the implication also goes the other way. It turns
out that in some cases it actually does if we reparameterize our predictions in
a clever (one might also say: complicated) way by the elements of a certain set
Bη.

Theorem 1. Suppose a loss ` : Y × A → [0,∞] satisfies Conditions 1 and 2
below for some η > 0. Then ` is η-mixable if and only if it can be parameterized
in such a way that it is η-exp-concave.

The technical conditions I need are the following:

1. All predictions in A should be admissible.

2. For any element g on the north-east boundary of the set Bη, there should
exist a prediction a ∈ A such that g(y) = e−η`(y,a) for all y.

It remains to explain what these conditions mean, and discuss their severity. I
will argue that Condition 1 is very mild. Condition 2 also appears to be generally
satisfied if the dimensionality of the set of predictions equals the number of
possible predictions minus one, i.e. dim(A) = |Y| − 1, but not in general. For
example, for the squared loss we predict by a single number a, so dim(A) = 1
and hence we have dim(A) = |Y|−1 if y only takes two different values, but not
if Y is the whole range [−1,+1]. Update: We can work around this, though.
See below.

3 The Technical Conditions

Admissibility Condition 1 is the easiest of the two. I will call a prediction
a ∈ A admissible if there exists no other prediction b ∈ A that is always at least
as good in the sense that `(y, b) ≤ `(y, a) for all y ∈ Y. If a is inadmissible,
then we could just remove it from the set of available predictions A, because
predicting b is always at least as good anyway. So admissibility seems more of
an administrative requirement (get rid of all predictions that make no sense)
than a real restriction.
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Condition 2 To explain the second condition, we define the new parameter-
ization Bη as the set of functions

Bη = {g : Y → [0, 1] | for some distribution π: g(y) =

∫
e−η`(y,a)π(da) ∀y}.

Note that the set Bη is convex by construction.
Let 1(y) = 1 be the constant function that is 1 on all y ∈ Y, and for any

g ∈ Bη let c(g) = sup{c ≥ 0 | (g + c · 1) ∈ Bη}. By the north-east boundary of
Bη, I mean the set of points {g+ c(g) | g ∈ Bη}. That is, if we move ‘south-east’
from any point in this set (in the direction of −1), we are inside Bη, but if we
move further ‘north-east’ (in the direction of 1) we are outside.

Condition 2 implies that the north-east boundary of Bη should be equal to
the set {e−η`(·,a) | a ∈ A}, which appears to be quite typical if dim(A) = |Y|−1,
but not in general.

4 Construction of the Parameterization and Proof

As we have already seen that η-exp-concavity trivially implies η-mixability, it
remains to construct the parameterization in which ` is η-exp-concave given
that it is η-mixable.

The parameterization we choose is indexed by the elements of Bη, which we
map onto A, with multiple elements in Bη mapping to the same element of A.
So let g be an arbitrary element of Bη. How do we map it to a prediction a ∈ A?
We do this by choosing the prediction a such that g(y) + c(g) = e−η`(y,a) for all
y. As g+ c(g) ·1 lies on the north-east boundary of Bη, such a prediction exists
by Condition 2.

Our construction ensures there exists a g ∈ Bη that maps to a for any
a ∈ A. To see this, suppose there was an a for which this was not the case, and
let ga = e−η`(·,a). Then we must have c(ga) > 0, because otherwise we would
have c(g) = 0 and ga would map to a. But then the prediction b ∈ A such that
e−η`(·,b) = g + c(g) · 1 would satisfy e−η`(y,b) > e−η`(y,a) for all y, and hence
`(y, b) < `(y, a) for all y, so that a would be inadmissible, which we have ruled
out by assumption.

We are now ready to prove that the loss is η-exp-concave in our parameteri-
zation. To show this, let π be an arbitrary probability distribution on Bη. Then
we need to show that

e−η`(y,gπ) ≥
∫
e−η`(y,g)π(dg) for all y ∈ Y,

where gπ =
∫
g π(dg). To this end, observe that∫
e−η`(·,g)π(dg) =

∫
(g + c(g) · 1) π(dg) = gπ + cπ · 1,

where cπ =
∫
c(g) π(dg). Now convexity of Bη ensures that

∫
e−η`(·,g)π(dg) ∈

Bη, so that we must have cπ ≤ c(gπ). But then

e−η`(y,gπ) = gπ(y) + c(gπ) ≥ gπ(y) + cπ =

∫
e−η`(y,g)π(dg)

for all y, which was to be shown.
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Figure 1: Plot of f(α) on [−1,+1]

5 Squared Loss

So how do things play out for the squared loss? We know that it is 1/2-
mixable, so we would like to find a parameterization in which it is also 1/2-
exp-concave. Suppose first that a takes values in [−1,+1] and y takes only two
values {−1,+1}. Then Condition 1 is clearly satisfied. The set B1/2 consists of
all the functions g : {−1,+1} → [e−2, 1] such that

g(y) =

∫
e−

1
2 (y−a)

2

π(da) for y ∈ {−1,+1} (2)

for some distribution π on A. So to verify Condition 2, we need to check that
for any g ∈ B1/2 there exists a prediction ag ∈ A that satisfies

g(y) + c(g) = e−
1
2 (y−ag)

2

for y ∈ {−1,+1}. (3)

Solving this we find that ag indeed exists and equals

ag = f−1
(
g(1)− g(−1)

)
, (4)

where f−1 is the inverse of f(α) = e−
1
2 (1−α)

2 − e− 1
2 (α+1)2 (see Figure 1). The

existence of ag for all g implies that Condition 2 is satisfied, and by Theorem 1
we have found a parameterization in which the squared loss is 1/2-exp-concave,
provided that y only takes the values {−1,+1}.

So what happens if we allow y to vary over the whole range [−1,+1]? In
this case I believe that no choice of ag will satisfy (3) for all y, and conse-
quently Condition 2 does not hold. Update: However, it turns out that any
parametrization that is η-exp-concave for y ∈ {−1,+1} is also η-exp-concave
for the whole range y ∈ [−1,+1]. This is a special property, proved by Haus-
sler, Kivinen and Warmuth [2, Lemma 4.1], [3, Lemma 3], that only holds for
certain loss functions, including the squared loss. Thus we have found a param-
eterization of the squared loss with y ∈ [−1,+1] in which it is 1/2-exp-concave
(instead of only 1/8-exp-concave like in the standard parameterization): param-
eterize by the functions g defined in (2), and map them to original parameters
via the mapping ag defined in (4).

6 Discussion

We have seen that exp-concavity trivially implies mixability. Conversely, mixa-
bility also implies exp-concavity roughly when the dimensionality of the set of
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predictions dim(A) equals the number of outcomes |Y| minus one. In general,
however, it remains unknown whether any η-mixable loss can be reparameter-
ized to make it η-exp-concave with the same η.

As exp-concavity is a stronger requirement than mixability and introduces
these complicated reparameterization problems, one might ask: why bother
with it at all? One answer to this is that taking aπ to be the mean reduces the
requirement (1) to ordinary concavity, which has a nice geometrical interpreta-
tion. Nevertheless, the extra flexibility offered by mixability can make it easier
to satisfy (for example, for the squared loss), so in general mixability would
appear to be the most convenient of the two properties.

6.1 Afterthought

It seems the proof of Theorem 1 would still work if we replaced 1 by any other
positive function. I wonder whether this extra flexibility might make Condition 2
easier to satisfy.
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