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policy: s -->a

transition: s,a --> s'
reward: s,a--> R

Three goals:

1. Reduce breadth
2. Reduce depth
3. Avoid repeating work



Monte Carlo Tree Search
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+ Keep information local
+ Uncertainty for exploration



Monte Carlo Tree Search

OB EIol6l0

SNV PR

+ Keep information local - No generalization
+ Uncertainty for exploration - Does not scale (memory)



Reinforcement Learning

S,a

- Unstable / local minima / high variance

- Poor exploration

+ Generalization
+ Bootstrapping

- (single trace)



Algorithm: Expert Iteration (ExIt)
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Algorithm: Expert Iteration (ExIt)
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lterating (local) search & generalization

Deep Learning

I Tree Search




lterating (local) search & generalization

What to store?




lterating (local) search & generalization

What to store?
|. Reduce breadth Policy s—11(a)
Il. Reduce depth Value s—V



lterating (local) search & generalization
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lterating (local) search & generalization
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Dataset
@ D = {s, n(als), V(s)}

1. Howto process the tree search information?
2. How to use the network in the tree search?




lterating (local) search & generalization
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1. How to process the tree search information?
2. How to use the network in the tree search?




How to process the tree search result?

Policy: MCTS picks action with highest n(s,a) at the root.



How to process the tree search result?
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How to process the tree search result?

Policy: MCTS picks action with highest n(s,a) at the root.

1. Chosen-action target (CAT):
a* = argmax,(n(s,a)) Lcat = —log[m(a™|s)]
2. Tree-policy Targets (TPT):
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How to process the tree search result?

Policy: MCTS picks action with highest n(s,a) at the root.

1. Chosen-action target (CAT):
a* = argmax,(n(s,a)) Lcat = — log[m(a™|s)]

2. Tree-policy Targets (TPT):

rlals) = (n(s,a)T — n(s,a) og[m(als
> (n(s,a)’ Lot ; n(s) log[(als)]

Silver, David, et al. "Mastering the game of go without human knowledge." Nature 550.7676 (2017): 354.




lterating (local) search & generalization
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lterating (local) search & generalization
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1. Howto process the tree search information?
2. How to use the network in the tree search?




How to warm start the tree search?

Policy (reduce breadth):

UCT(s, a) = r(s,a) +Cb\/logn(s)

n(s,a) n(s, a)



How to warm start the tree search?

Policy: This paper (ExIt)

_r(s,a) log n(s) 7(als)
UCT(s,a) = n(s,a) * Cb\/ n(s,a) . wan(s, a) +1



How to warm start the tree search?

Policy: AlphaGo Zero

_ 1(s,0) (als)
n(s,a) “n(s,a) +1

Silver, David, et al. "Mastering the game of go without human knowledge." Nature 550.7676 (2017): 354.
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Results

Comparison to vanilla RL (policy network only)
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Results

Added benefit of value network
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Results

Battle versus MoHex
(search-based, game-specific pruning and end-game solving)

EXIT Setting Time/move | EXIT winrate | MOHEX Setting Solver Time/move

104 iterations ~ 0.3s 75.3% 10? iterations No ~0.2s
104 iterations ~ 0.3s 59.3% 10° iterations No ~ 2s
104 iterations ~ 0.3s 55.6% 4 s/move Yes 4s




Results

Battle versus MoHex
(search-based, game-specific pruning and end-game solving)

EXIT Setting Time/move | EXIT winrate | MOHEX Setting Solver Time/move

104 iterations ~ 0.3s 75.3% 10? iterations No ~0.2s
104 iterations ~ 0.3s 59.3% 10° iterations No ~ 2s
104 iterations ~ 0.3s 55.6% 4s/move Yes 4s

Maybe not as impressive as AlphaGo Zero
But: Training time ~100.000 times lower than AGO
(AGO = ~1.6e12 traces)



Discussion: Search and RL
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Sutton & Barto. Reinforcement Learning: An Introduction. 1998.
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Discussion: Search and RL

Unified View
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Discussion

Balancing local differentiation and global generalization

Pure | Pure
Tree Search RL
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Balancing local differentiation and global generalization
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Discussion

| empirically observed the problem of too early generalization in RL.



Discussion

-l empirically observed the problem of too early generalization in RL.

Open Questions:
- Treesearch

- What to store?
- How to steer search from a NN?

- Balance search/function approximation



Thanks!



