Thinking Fast and Slow with Deep Learning and Tree Search

by Thomas Anthony, Zheng Tian, David Barber (University College London)

NIPS Debriefing

Thomas Moerland (TU Delft)

Content

- 1. Background: Search & Reinforcement Learning
- 2. Algorithm: Expert Iteration (ExIt) \rightarrow Iterating Search & RL
- 3. Results: Hex (game)
- 4. Discussion: Interpretation

Sequential Decision Making

Three goals:

- 1. Reduce breadth
- 2. Reduce depth
- 3. Avoid repeating work

Monte Carlo Tree Search

- + Keep information local
- + Uncertainty for exploration

Monte Carlo Tree Search

- + Keep information local
- + Uncertainty for exploration

- No generalization
- Does not scale (memory)

Reinforcement Learning

- + Generalization
- + Bootstrapping

- Unstable / local minima / high variance
- Poor exploration
- (single trace)

Algorithm: Expert Iteration (ExIt)

Tree Search	Supervised Learning (RL)		
'Thinking slow'	'Thinking fast'		
Expert	Apprentice		

Algorithm: Expert Iteration (ExIt)

Tree Search	Supervised Learning (RL)		
'Thinking slow'	'Thinking fast'		
Expert	Apprentice		

What to store?

What to store?

I. Reduce breadthPolicy $s \to \pi(a)$ II. Reduce depthValue $s \to V$

- 1. How to process the tree search information?
- 2. How to use the network in the tree search?

- 1. How to process the tree search information?
- 2. How to use the network in the tree search?

Policy: MCTS picks action with highest n(s,a) at the root.

Policy: MCTS picks action with highest n(s,a) at the root.

1. Chosen-action target (CAT):

 $a^* = \operatorname{argmax}_a(n(s, a))$ $\mathcal{L}_{CAT} = -\log[\pi(a^*|s)]$

Policy: MCTS picks action with highest n(s,a) at the root.

1. Chosen-action target (CAT):

$$a^* = \operatorname{argmax}_a(n(s, a))$$
 $\mathcal{L}_{CAT} = -\log[\pi(a^*|s)]$

2. Tree-policy Targets (TPT):

$$\pi^*(a|s) = \frac{n(s,a)}{n(s)}$$
 $\mathcal{L}_{\text{TPT}} = -\sum_a \frac{n(s,a)}{n(s)} \log[\pi(a|s)]$

Policy: MCTS picks action with highest n(s,a) at the root.

1. Chosen-action target (CAT):

$$a^* = \operatorname{argmax}_a(n(s, a))$$
 $\mathcal{L}_{CAT} = -\log[\pi(a^*|s)]$

2. Tree-policy Targets (TPT):

$$\pi^*(a|s) = \frac{(n(s,a))}{\sum (n(s,a))}^{\mathsf{T}} \qquad \qquad \mathcal{L}_{\mathrm{TPT}} = -\sum_a \frac{n(s,a)}{n(s)} \log[\pi(a|s)]$$

Silver, David, et al. "Mastering the game of go without human knowledge." Nature 550.7676 (2017): 354.

- 1. How to process the tree search information?
- 2. How to use the network in the tree search?

- 1. How to process the tree search information?
- 2. How to use the network in the tree search?

How to warm start the tree search?

Policy (reduce breadth):

$$\mathrm{UCT}(s,a) = \frac{r(s,a)}{n(s,a)} + c_b \sqrt{\frac{\log n(s)}{n(s,a)}}$$

How to warm start the tree search?

Policy:

This paper (ExIt)

$$\text{UCT}(s,a) = \frac{r(s,a)}{n(s,a)} + c_b \sqrt{\frac{\log n(s)}{n(s,a)}} + w_a \frac{\hat{\pi}(a|s)}{n(s,a) + 1}$$

How to warm start the tree search?

Policy:

AlphaGo Zero

$$\mathrm{UCT}(s,a) = rac{r(s,a)}{n(s,a)}$$

$$+w_a \frac{\hat{\pi}(a|s)}{n(s,a)+1}$$

Silver, David, et al. "Mastering the game of go without human knowledge." *Nature* 550.7676 (2017): 354.

Game = Hex

Comparison to vanilla RL (policy network only)

Added benefit of value network

Battle versus MoHex

(search-based, game-specific pruning and end-game solving)

ExIT Setting	Time/move	ExIT win rate	MoHEX Setting	Solver	Time/move
10^4 iterations	$\sim 0.3 \mathrm{s}$	75.3%	10^4 iterations	No	$\sim 0.2s$
10^4 iterations	$\sim 0.3 \mathrm{s}$	59.3%	10^5 iterations	No	$\sim 2s$
10^4 iterations	$\sim 0.3 \mathrm{s}$	55.6%	4s/move	Yes	4s

Battle versus MoHex

(search-based, game-specific pruning and end-game solving)

ExIT Setting	Time/move	ExIT win rate	MoHEX Setting	Solver	Time/move
10^4 iterations	$\sim 0.3 \mathrm{s}$	75.3%	10^4 iterations	No	$\sim 0.2s$
10^4 iterations	$\sim 0.3 \mathrm{s}$	59.3%	10^5 iterations	No	$\sim 2s$
10^4 iterations	$\sim 0.3 \mathrm{s}$	55.6%	4s/move	Yes	4s

Maybe not as impressive as AlphaGo Zero But: Training time ~ 100.000 times lower than AGO (AGO = ~ 1.6e12 traces)

Discussion: Search and RL

Discussion: Search and RL

Sutton & Barto. Reinforcement Learning: An Introduction. 1998.

Discussion: Search and RL

Balancing local differentiation and global generalization

Discussion

Balancing local differentiation and global generalization

Discussion

- I empirically observed the problem of too early generalization in RL.

Discussion

- I empirically observed the problem of too early generalization in RL.

Open Questions:

- Tree search
- What to store?
- How to steer search from a NN?
- Balance search/function approximation

Thanks!