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This Year’s Juicy Controversy

Ali Rahimi (test of time award)

Rahimi:

I Machine learning has become alchemy

I Alchemists discovered metallurgy, glass-making, and various
medications; while machine learning researchers have managed to
make machines that can beat human Go players, identify objects
from pictures, and recognize human voices.

I However, alchemists believed they could cure diseases or transmute
basic metals into golds, which was impossible.

I The Scientific Revolution had to dismantle 2000 years worth of
alchemical theories.

See https://medium.com/@Synced/

lecun-vs-rahimi-has-machine-learning-become-alchemy-21cb1557920d.
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Two Papers That Go Beyond Alchemy

I Wilson, Roelofs, Stern, Srebro, Recht. The Marginal Value of
Adaptive Gradient Methods in Machine Learning. NIPS 2017.

I Bartlett, Foster, Telgarsky. Spectrally-normalized margin bounds
for neural networks. NIPS 2017.
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Generalization Questions

I High-dimensional setting: typically number of parameters is d ≥ 25n

I So uniform convergence impossible. Need to do some kind of
regularization/restrict the parameters.

I But even if you disable all standard regularization, it still works!
[Zhang,Bengio,Hardt,Recht,Vinyals,ICLR 2017]

I So how are the parameters restricted?

By the behavior of the optimization algorithm!
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Paper 1

Wilson, Roelofs, Stern, Srebro, Recht. The Marginal Value of
Adaptive Gradient Methods in Machine Learning. NIPS 2017.

I Prior work: early stopping of optimization algorithms acts as implicit
regularization by restricting the complexity of the parameters that
can be reached.

I This work: adaptive optimization methods often give better fit on
train set, but worse generalization to test set, because they find
different types of solutions.
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Example: The Potential Perils of Adaptivity

Least Squares with d � n:

minimize in w
1

2
‖Xw − y‖2

2

for X =

xᵀ
1
...
xᵀ
n

 an n × d matrix, w ∈ Rd , y ∈ Rn.

I For d > n, solution is not unique.

I Which solution does an optimization algorithm find?
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Example: The Potential Perils of Adaptivity

Least Squares with d � n:

minimize in w
1

2
‖Xw − y‖2

2 (1)

Non-adaptive methods:

wt+1 = wt − ηt(xᵀ
i w − yi )xi = wt − ctxi (Stochastic GD)

wt+1 = wt − ηt
n∑

i=1

(xᵀ
i w − yi )xi = wt −

n∑
i=1

ct,ixi (GD)

I If w1 is a linear combination of the feature vectors, then so is wt .

I Among such linear combinations, (1) has a unique minimum: the
minimizer of (1) with smallest ‖w‖2!
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Example: The Potential Perils of Adaptivity

minimize in w
1

2
‖Xw − y‖2

2 (2)

Adaptive methods (AdaGrad,RmsProp,Adam):

wt+1 = wt − ctH
−1
t xi + βtH

−1
t Ht(wt − wt−1)

Ht = diag
( t∑

s=1

ηsgsg
ᵀ
s

)1/2

“Can construct a variety of instances where these methods converge to
solutions with small ‖w‖∞ instead of ‖w‖2, and this can overfit in high
d .”

Lemma

If there exists a c such that X sign(Xᵀy) = cy , then these methods
converge to a unique w ∝ sign(Xᵀy).

E.g. sign(Xᵀy) looks like (+1,−1, . . . ,+1,+1)ᵀ.
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Deep Learning Experiments

I The adaptive methods generalize worse than non-adaptive methods,
even when they achieve the same or smaller training error

I Adaptive methods often display faster initial progress on the training
set, but their performance quickly plateaus on a separate
‘development’ data set

I Tuning is often said not to be necessary for Adam, but it makes a big difference
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Remarks

I Paper 1 is really about AdaGrad, RmsProp, Adam, which are
designed to favor small ‖w‖∞, so conclusions are about this
behavior, not necessarily about adaptivity.

I If Adam usually generalizes significantly worse than SGD, then why
is it becoming the standard choice?

I Surely people would notice this. . .
I Relatedly: Adam does not even always converge on simple linear

one-dimensional tasks [Reddi,Kale,Kumar,ICLR 2018]
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Paper 2

Bartlett, Foster, Telgarsky. Spectrally-normalized margin bounds for
neural networks. NIPS 2017.

I Prior work: deep neural nets even fit random labels with 0 training
error [Zhang,Bengio,Hardt,Recht,Vinyals,ICLR 2017]

I This work:
I Generalization performance is not well explained (solely) by ‖w‖2 of

solution
I This work: explain generalization by margin-normalized spectral

complexity (theory matches empirical results)
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I Consider neural networks for k classes:

FA(x) = σL(ALσL−1(AL−1 · · ·σ1(A1x) · · · )) ∈ Rk .

I Classify by maxj FA(x)j
I Margin measures gap with correct label y ∈ {1, . . . , k}:

ma(x, y) := FA(x)y −max
j 6=y

FA(x)j

I Spectral complexity (relative to M1, . . . ,ML):

RA :=

(
L∏

i=1

ρi‖Ai‖σ

)(
L∑

i=1

‖Aᵀ
i −Mᵀ

i ‖
2/3
2,1

‖Ai‖2/3
σ

)3/2

I Margin normalized spectral complexity of (x, y):

mA(x, y)

RA

(assuming normalized inputs 1
n

∑n
i=1 ‖xi‖2

2 = 1)
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Results
Theory
Good margin + small spectral complexity implies small generalization
error

Empirical Results:
Density of mA(x,y)

RA
seems to match with “hardness” of data sets (very

hand-wavy):
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Details of Theoretical Result

Theorem

For i.i.d. data, with probability at least 1− δ, for every margin γ > 0 and
any network FA:

Pr(arg max
j

FA(X )j 6= y) ≤ R̃γ(FA) + Õ

(
‖X‖2RA

γn
ln(W ) +

√
ln(1/δ)

n

)

where R̃γ(f ) ≤ 1
n

∑
i 1[f (xi )yi ≤ γ + maxj 6=yi f (xi )j ] and

‖X‖2 =
√∑

i ‖xi‖2
2.
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