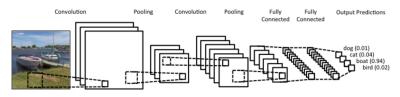
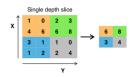
Dynamic Routing Between Capsules


Sara Sabour, Nicholas Frosst and Geoffrey E. Hinton (Google Brain, Toronto)

presented by William Weimin Yoo (Leiden University)


National NIPS Debriefing, 2018

What is wrong with Convolutional Neural Nets?

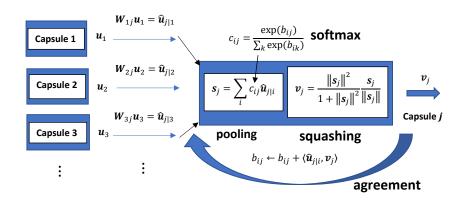
- 1. Does not encode spatial relationships, e.g., orientation, rotations etc.
- 2. Max pooling looks only at most active neuron, location information is not recorded ⇒ positional invariance

person	0.88
•	

reddish orange color		0.78
light brown color		0.78
starlet		0.66
entertainer		0.66
female	-	0.60
woman	-	0.59
young lady (heroine)		0.59

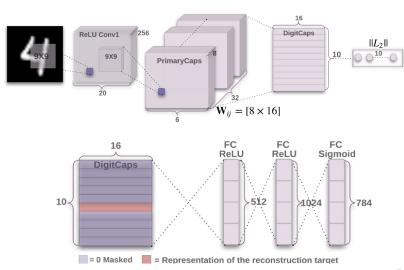
person	0.90				
light brown color		0.84			
starlet	_	0.77			
entertainer	_	0.77			
female	_	0.65			
woman	_	0.64			
young lady (heroine)	_	0.64			
reddish orange color	_	0.64			
newsreader	_	0.50			

coal black color	0.79
nairpiece (hair)	0.71

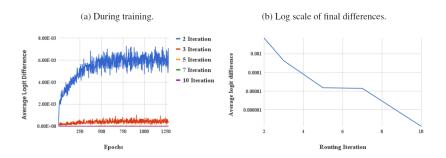

Capsules and Routing

- Capsule is a group of neurons encoding properties (instantiation parameters) of entities in an image (e.g., circle, 1)
- 2. Parameters: existence, pose (position, size, orientation), deformation, hue, texture etc.
- 3. So unlike CNN (scalars), outputs and inputs are (high-dimensional) vectors
- 4. Norm of vectors encode probability of existence
- Draws analogy from computer graphics, points on linear manifold and transformation
- 6. Max pooling is too crude, how to route vectors of instantiation parameters from one capsule layer to another?

MNIST


7 7 7 7 **7 7** 7 7 7 7 7 7

Dynamic Routing by Agreement


CapsNet Architecture

1 Conv. layer + 2 Capsule layers + 3 Fully connected

How many routing iterations?

Average change of b_{ij} (routing logit) vs. routing iterations:

Stabilizes after 500 epochs of training. Negligible change (1×10^{-5}) by 5 iterations.

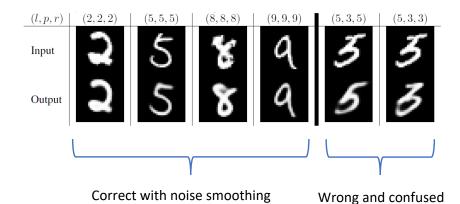
Margin Loss for Digit Existence

 L_k : Margin loss for digit capsule k v_k : Output from digit capsule k

$$L_k = T_k \max(0, m^+ - \|\boldsymbol{v}_k\|)^2 + \lambda(1 - T_k) \max(0, \|\boldsymbol{v}_k\| - m^-)^2$$

$$T_k=1$$
 iff digit k present $m^+=0.9$ and $m^-=0.1$ $\lambda=0.5$

 \triangleright Train using backpropagation (Rumelhart, 1986) with Adam optimizer (Kingma and Ba 2014) to minimize $\sum_{k=1}^{10} L_k$ Implemented using Tensor Flow (Abadi et al. 2016)


Total loss = Margin loss $+0.0005 \times (Reconstruction loss)$

MNIST Reconstructions

l: label

p: prediction

r: target reconstruction

1

MNIST Classification Results

Method	Routing	Reconstruction	MNIST (%)	MultiMNIST (%)
Baseline	-	-	0.39	8.1
CapsNet	1	no	$0.34_{\pm 0.032}$	-
CapsNet	1	yes	$0.29_{\pm 0.011}$	7.5
CapsNet	3	no	$0.35_{\pm 0.036}^{-}$	-
CapsNet	3	yes	$0.25_{\pm 0.005}$	5.2

- ▶ Baseline is 3 Conv. layer CNN + 2 FC (dropout) + softmax
- ▶ Designed so that comp. cost ≈ CapsNet
- ▶ Parameters: Baseline 35.4M vs. CapsNet 8.2M
- ⇒ CapsNet can achieve state-of-art performance with relatively shallow (3) network

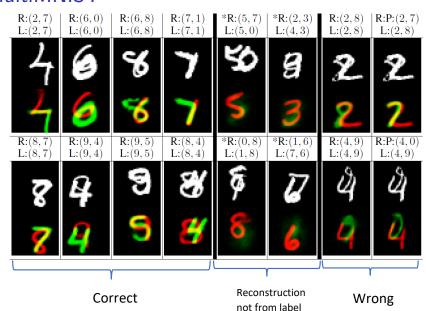
Dimension Perturbations

 $d{\sf th}\ {\sf DigitCaps}\ (16\times 1) + [-0.25, -0.2, \ldots, 0, \ldots, 0.2, 0.25]$ for $d=1,\ldots,6$:

Scale and thickness	φ	6	6	6	6	6	6	6	6	6	6
Localized part	0	6	6	6	6	6	6	6	6	6	6
Stroke thickness	5	5	5	5	5	5	5	5	5	5	5
Localized skew	4	4	4	4	4	4	4	4	4	4	4
Width and translation	7	5	3	3	3	3	3	3	3	3	3
Localized part	2	2	2	2	2	2	2	2	2	2	2

AffNIST

				-		_									_	
9	9	9	9	9	q	9	9	9	9	9	9	9	q	9	9	9
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
7	4	4	4	7	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
										4	(□	a > 4	(≣)	(≣)	∄)


Robust to Affine Transformations

expanded MNIST: digits placed randomly on 40×40 pixels **affNIST**: MNIST + random small affine transformation

	expanded MNIST	affNIST
CapsNet	99.23%	79%
CNN	99.22%	66%

Table: Test errors

MultiMNIST

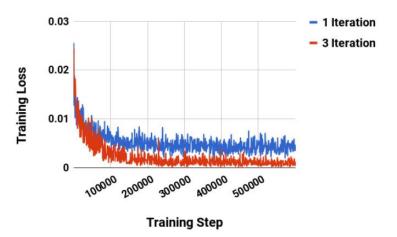
or prediction

→御 → → 臣 → → 臣 → □ 臣

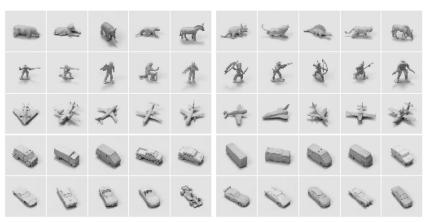
MultiMNIST Classification Results

Take learning rate $10\times$ larger because training dataset is larger

Method	Routing	Reconstruction	MNIST (%)	MultiMNIST (%)
Baseline	-	-	0.39	8.1
CapsNet	1	no	$0.34_{\pm 0.032}$	-
CapsNet	1	yes	$0.29_{\pm 0.011}$	7.5
CapsNet	3	no	$0.35_{\pm 0.036}$	-
CapsNet	3	yes	$0.25_{\pm 0.005}$	5.2


- ► Baseline CNN: 2Conv. layer+2 FC (ReLU and pooling in between)
- ▶ Parameters: 24.56 M for CNN vs. 11.36 M CapsNet
- State-of-the-art performance on segmentation

CIFAR10: $10.6\% \approx \text{CNN}$ (Zeiler and Fergus 2013)


airplane	🛁 🔉 💹 🤛 🕶 🔀 🔐 🚅 🐸
automobile	
bird	
cat	
deer	
dog	R 🐔 🤝 🤼 🥸 👨 😘 🗥 🥸
frog	
horse	
ship	😇 👺 👛 🤝 👛 🥩 🕫 👛
truck	

CIFAR10 Iterations (3 recommended)

smallNORB

2.7% error \approx state-of-the-art Cireşan et al. 2011

Training instances

Test instances

SVHN: 4.3% error

Tensor Flow implementation in Sara Sabour's GitHub: https://github.com/Sarasra/models/tree/master/research/capsules

New (follow-up) paper for ICLR 2018 by the same authors: Matrix Capsules with EM Routing