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Abstract

Universal coding is the standard technique for combining multiple predictors.
This technique is explicitly used in minimum description length modeling, and
implicitly in Bayesian modeling. Using universal coding, one can predict nearly
as well as the best single predictor. When the predictors are themselves uni-
versal codes for models (sets of predictors) with varying number of parameters,
however, we may often achieve smaller loss by switching between predictors in
a different manner, which takes the local relative behaviour of the predictors
into account. In this paper we present the switch-code, which implements this
idea. It can be applied to coding, model selection, prediction and density es-
timation problems. As a proof of concept we give a particular application to
histogram density estimation. We show that the switch-code achieves smaller
redundancy, O(n1/3 log log n), than standard universal coding, which achieves
O(n1/3(log n)2/3).

1 Introduction

In prediction and data compression tasks the goal is often to combine or choose between
several prediction strategies, where more than one of these strategies is potentially
successful. For example, in order to predict tomorrow’s stock prices one might consult
a number of experts as well as a couple of statistical models of varying sophistication,
each of which might make different predictions. An important question is then how
these predictions should be combined, in this case to maximise profit.

Here we consider sequential prediction strategies (predictors): functions from finite
sequences over a sample space X to probability distributions on the next outcome.
Such predictors are sometimes also called prequential forecasting systems [3]. We
write P (xn+1|x1, . . . , xn) for the probability of xn+1 ∈ X given previous observations
xn = (x1, . . . , xn) ∈ X n, and we abbreviate P (xn|xm) :=

∏n
i=m+1 P (xi|x

i−1) and write
P (xn) when m = 0. The performance of a predictor P on a sequence xn is measured
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by the accumulated log loss − log2 P (xn) =
∑n

i=1 − log2 P (xi|x
i−1). This loss mea-

sure is appropriate in, for example, data compression settings, since we can think of
− log2 P (xn) as the number of bits needed to encode the data using the code based on
P .

Universal Prediction In this setting, universal prediction (in data compression ap-
plications known as universal coding) is a widely used method of combining predictors.
It has the advantage that its (accumulated) loss on xn is never much higher than the
loss Lbest(x

n) of the best original predictor. For example, consider two predictors P1

and P2. We construct a universal predictor using their Bayesian mixture as follows:

Pmix(x
n) := P1(x

n)w(1) + P2(x
n)w(2). (1)

Here, w is a prior distribution on the original predictors. Clearly, for all xn ∈ X n,
we have − log2 Pmix(x

n) − Lbest(x
n) ≥ 0; but if, for instance, we use the uniform prior

w(1) = w(2) = 1/2, we are also guaranteed that − log2 Pmix(x
n) − Lbest(x

n) ≤ 1.

The Central Idea Thus it is sensible to use universal prediction if we are satisfied
with the loss of the best predictor under consideration, which is standard in minimum
description length (MDL) and Bayesian approaches to prediction. However, we argue
that it is often possible to combine predictors in such a way that the result achieves
a lower loss than the best original predictor! This is possible if the identity of the
best predictor changes with the sample size in a predictable way. This may occur, for
example, if the predictors P1 and P2 are themselves universal predictors for nested
models (sets of predictors) M1 and M2, M1 ⊂ M2. In this case P1 typically predicts
better at small sample sizes while P2 predicts better eventually, because M2 has more
parameters that need to be learned than M1. We provide an example in Figure 1,
which shows the difference in accumulated loss for two predictors P1 and P2 on “The
War of the Worlds” by H.G. Wells. P1 is the Krichevsky-Trofimov (KT) [5] predictor
for first-order Markov chains, P2 is the KT predictor for second-order Markov chains.
Clearly P1 is the best predictor for about the first 50 000 outcomes, after which it
is overtaken by P2. Ideally, we should therefore predict the initial 50 000 outcomes
using P1 and the rest using P2. However, Pmix only starts to behave like P2 when its
accumulated loss becomes lower than the accumulated loss of P1. Thus, in the shaded
area Pmix behaves like P1 while P2 accumulates less loss on those outcomes!

The Switch-Code For such cases, we have developed an alternative method to
combine predictors P1 and P2 into a single predictor Psw, which we call the switch-code
[10]. Given a switch-point s at which to switch from P1 to P2, it predicts according to

Psw(xn+1|x
n, s) :=

{

P1(xn+1|x
n) if n < s

P2(xn+1|x
n) otherwise.

(2)

The optimal switch-point, however, will typically depend on the data, which leads us
to define the unconditional switch-code as

Psw(xn) :=
∞

∑

s=0

Psw(xn|s)w(s) =
∞

∑

s=0

n
∏

j=1

Psw(xj|x
j−1, s)w(s), (3)

where w is a prior on the sample size at which we should switch from P1 to P2. As
Figure 1 shows, Psw behaves like P1 initially, but in contrast to Pmix it starts to mimic
P2 almost immediately after P2 starts making better predictions (here we instantiated
w to the universal prior on the integers, see the end of Section 4). In Section 2 we
bound the individual sequence redundancy of the switch-code and in Section 3 we show
how Psw(xn) can be computed in O(n) time.
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Figure 1: Accumulated loss difference on prefixes of “The War of the Worlds”.

Applications In the discussion of our results in Section 5 we argue that the switch-
code potentially outperforms standard universal predictors (like e.g. Pmix) whenever P1

and P2 are themselves universal predictors relative to some underlying models M1 and
M2. This setting is sometimes called twice-universal prediction [9]. It is encountered
in (a) Bayesian and MDL approaches to statistical model selection, prediction and
density estimation problems [4]; and (b) in some state-of-the-art data compressors
such as the context-tree weighting method [12]. In this preliminary paper, we merely
highlight a single application where the use of the switch-code improves over other,
existing methods: nonparametric density estimation based on histograms with bins of
equal width.

Density estimation with histograms is considered by Rissanen, Speed and Yu (RSY)
[8, 13], who show that in estimating a differentiable density that is bounded away from
zero and infinity, it is asymptotically optimal in expectation to let the number of his-
togram bins increase as ⌈n1/3⌉ with the sample size n. Although they show that this
strategy achieves the minimax optimal expected redundancy, O(n1/3), using a fixed
function of the sample size to determine the number of bins leads to concerns about
the efficiency of the procedure when the estimated density does not satisfy the as-
sumed conditions. In Section 4 we generalise the switch-code to switch between a
sequence of (more than two) predictors that use increasingly many bins. There we
also present a theorem, which will be proved in a subsequent full paper, showing that
in the setting of RSY it achieves close to optimal redundancy, O(n1/3 log log n), while
still determining the number of histogram bins automatically from the data. In the
same setting the standard Bayesian mixture/MDL approach only achieves redundancy
O(n1/3(log n)2/3) [13]. This means that, based on the switch-code, we obtain a flex-
ible nonparametric density estimator that has not specifically been designed for the
restricted RSY setting; nevertheless, if RSY’s assumptions do apply, then in contrast



to the standard Bayesian/MDL estimator the switch-code estimator converges almost
at the minimax-optimal rate that can be achieved within this restricted setting.

2 Redundancy of the Switch-Code

We measure the efficiency of the switch-code in terms of its individual sequence redun-
dancy. For any two predictors P and P ′, the individual sequence redundancy of P ′

relative to P on data sequence xn is defined as

R(P, P ′, xn) := log P (xn) − log P ′(xn). (4)

The following proposition provides an upper bound on the individual sequence redun-
dancy of the switch-code relative to Psw(·|s) for any switch-point s and to the original
predictors P1 and P2.

Proposition 1. Let P1 and P2 be arbitrary predictors and let Psw(·|s) and Psw be the
corresponding switch-code with known switch-point s and prior w, respectively, as in
(2) and (3). Then, for any data sequence xn,

R(P1, Psw, xn) ≤ − log
∞

∑

s=n

w(s), (5)

R(Psw(·|s), Psw, xn) ≤ − log w(s). (6)

Proof. The proof follows from the observations that Psw(xn|s) = P1(x
n) for s ≥ n, such

that Psw(xn) ≥
∑

∞

s=n w(s) · P1(x
n), and Psw(xn) ≥ w(s) · Psw(xn|s) for all s ∈ N.

The proposition shows that the redundancy of the switch-code does not grow with
the sample size, but only depends on the index of the optimal switch point s, i.e.
the index where P2 becomes a better predictor than P1. Since Psw(·|s = 0) = P2, it
also follows from (6) that the switch-code incurs at most constant individual sequence
redundancy with respect to P2. It is important to observe that R(P2, Psw, xn) can in
fact be much smaller than zero in cases where s = 0 is not the optimal switch-point on
the data.

The worst-case redundancy with respect to P1 generally does grow with the sample
size, at a rate which is determined by the prior w. One can ensure that the redundancy
with respect to P1 is bounded by a constant, by defining w such that it assigns prior
mass to indices beyond any sample size that is ever obtained. To be perfectly safe, we
could take this idea to an extreme by including infinity in the domain of switch-points;
we could then specify w(∞) > 0, which (since now Psw(·|s = ∞) = P1) guarantees
constant worst-case redundancy of at most − log w(∞) bits.

3 Computing the Switch-Code

As the definition, (3), of the switch-code involves a sum of infinitely many terms, it
may not be immediately clear that it can in fact be computed efficiently. Here we show
how the probability Psw(xn) of a data sequence xn can be computed sequentially as a
function of the predictions of P1 and P2, requiring only O(n) computation time.



The probability can be decomposed as follows:

Psw(xn+1) =
∞

∑

s=0

Psw(xn+1|s)w(s)

= P1(xn+1|x
n)

∞
∑

s=n+1

Psw(xn|s)w(s) + P2(xn+1|x
n)

n
∑

s=0

Psw(xn|s)w(s). (7)

Dividing by Psw(xn), we find that the predictive distribution Psw(xn+1 | xn) = Psw(xn+1)/
Psw(xn) is a mixture of the predictions P1(xn+1|x

n) and P2(xn+1|x
n) with the following

respective mixture weights W1(x
n) and W2(x

n):

W1(x
n) =

∑

∞

s=n+1 Psw(xn|s)w(s)
∑

∞

s=0 Psw(xn|s)w(s)
, W2(x

n) = 1 − W1(x
n). (8)

Our goal is to efficiently update these mixture weights each time a new outcome has
to be predicted. To this end, observe that Psw(xn|s) = P1(x

n) for s ≥ n, so that the
expression for W1(x

n) reduces to:

W1(x
n) =

P1(x
n)

∑

∞

s=n+1 w(s)
∑n

s=0 Psw(xn|s)w(s) + P1(xn)
∑

∞

s=n+1 w(s)

=
P1(x

n)
∑

∞

s=n+1 w(s)
∑n

s=0 P1(xs)P2(xn|xs)w(s) + P1(xn)
∑

∞

s=n+1 w(s)
.

For simplicity we now assume that the original predictors P1 and P2 assign non-zero
probability to the data. If this assumption is violated, W1(x

n) can still be computed
equally efficiently. Letting δ(xn) := P1(x

n)/P2(x
n),

W1(x
n) =

P1(x
n)

∑

∞

s=n+1 w(s)

P2(xn)
∑n

s=0 P1(xs)/P2(xs)w(s) + P1(xn)
∑

∞

s=n+1 w(s)

=

. . . . . .... δ(xn)
.... . . . . .

(

1 −
. . . . . . . . . . ....
∑n

s=0 w(s)
.... . . . . . . . . . .

)

. . . . . . . . . . . . . . . ....
∑n

s=0 δ(xs)w(s)
.... . . . . . . . . . . . . . . . + δ(xn) (1 −

∑n
s=0 w(s))

. (9)

Storage is required only for the values of the subexpressions in the dotted boxes. They
can be updated to their new values in constant time when the next outcome xn+1

becomes available. As δ(xn) can take on extremely large or small values, it may be
necessary to store logarithms rather than the actual values.

4 Histogram Density Estimation

Rissanen, Speed and Yu [8] consider density estimation based on histogram models with
equal-width bins relative to a restricted set T of ‘true’ densities on the unit interval
X = [0, 1]. The restriction on T is that there should exist constants 0 < c0 < 1 < c1

such that for every f ∈ T , for all x ∈ X , c0 ≤ f(x) ≤ c1 and |f ′(x)| ≤ cf , where f ′

denotes the first derivative of f and cf may depend on f , but not on x. The densities
are extended to sequences by taking products: f(xn) :=

∏n
t=1 f(xt) for xn ∈ X n.

The histogram models are defined by their predictive densities: A model with m
equal-width bins [0, a1], (a1, a2], . . ., (am−1, 1], with ai = i/m, predicts according to

fm(xn+1 | xn) :=
nxn+1

(xn) + 1

n + m
· m, (10)



where nxn+1
(xn) denotes the number of outcomes in xn that fall into the same bin as

xn+1. For m = m0, . . ., mn−1, Rissanen, Speed and Yu prove an upper bound on the
expected redundancy of the joint density fm(xn) :=

∏n
t=1 fmt−1

(xt | xt−1):

Theorem 2 (Theorem 2 from [8]). Suppose m0 = 1 and ⌈(t/α)1/3⌉ ≤ mt ≤ ⌈t1/3⌉ for
some fixed α ≥ 1 for t = 1, . . ., n − 1. Then for every f ∈ T

1

n
EXn∼fn

[

log
f(Xn)

fm(Xn)

]

≤ Afn
−2/3, (11)

where Af is a constant dependent on f .

In [8] the theorem is proved only for α = 1, but their proof remains valid for
larger values of α, as long as α does not vary with t. We require this generalisation of
Theorem 2 in our proof of Theorem 5, which is stated below.

Theorem 2 shows that the number of histogram bins should increase approximately
as n1/3 with the sample size n. We will consider non-decreasing sequences m0 ≤ . . . ≤
mn−1 that satisfy the conditions of the theorem, because these sequences all correspond
to the same sequence of predictors P1, P2, . . . and we can generalise the switch-code
to switch between the first k of these predictors: Suppose we have a vector s = s1, . . .,
sk−1 of k − 1 switch-points. For convenience, also define s0 = 0, sk = ∞. Given these
switch-points, the switch-code Psw for k predictors predicts according to

Psw(· | xn, s) := Pi(· | xn), where i = arg minj sj−1 ≤ n < sj, (12)

and we again define the unconditional switch-code based on prior w by

Psw(xn) :=
∑

s∈Nk−1

Psw(xn|s)w(s), (13)

where w is now a prior on k − 1 switch-points. Note that (12) and (13) reduce to (2)
and (3) if k = 2.

Any non-decreasing sequence m0 ≤ . . . ≤ mn−1 may be fully specified by the indexes
where it increases, i.e. by the switch-points between predictors. The reader may verify
that the requirements of Theorem 2 are satisfied if the switch-points are chosen as in
the following lemma.

Lemma 3 (m Specified by Switch-Points). For arbitrary α ≥ 1 and k predictors, any
non-decreasing sequence m = m0, . . ., mαk3 that is specified by k − 1 switch-points
s1 ≤ . . . ≤ sk−1, satisfies the conditions of Theorem 2 if i3 ≤ si ≤ α · i3 for i = 1, . . .,
k − 1.

As with the two-predictor switch-code, we interpret the switch-points as the sample
sizes at which we switch to the next predictor on the list. Hence the interpretation of
s1, . . ., sk−1 is clear if they are non-decreasing: s1 ≤ . . . ≤ sk−1. The following lemma
clarifies their interpretation if some parameters are decreasing, for instance if s3 < s2.

Lemma 4 (Decreasing Switch-Point Parameters). Suppose s = s1, . . . , sk−1 are switch-
point parameters such that i3 ≤ si ≤ α · i3 for 1 ≤ i ≤ k − 1. Let s′ = s1, max{s1, s2},
. . ., max{s1, . . . , sk−1}. Then Psw(· | s) = Psw(· | s′) and i3 ≤ s′i ≤ α · i3 for 1 ≤ i ≤
k − 1.

Proof. Psw(· | s) = Psw(· | s′) can be verified directly from (12). For the second claim
it is sufficient to verify that max{si : i ≤ j} ≤ α · j3 for 1 ≤ j ≤ k − 1, which can be
done by induction on j.



The switch-code for k predictors satisfies the following upper bound, which will be
proved in the full paper.

Theorem 5 (Switch-Code Expected Redundancy). Let w be a mass function on N

such that log 1/w(n) = log(n + 1) + O(log log n) and, for any number of models k ≥

⌈n1/3⌉, let Psw denote the switch-code based on w′(s) =
∏k−1

i=1 w(si), where s = (s1, . . .,
sk−1) ∈ N

k−1. Then for every f ∈ T

1

n
EXn∼fn

[

log
f(Xn)

Psw(Xn)

]

≤ Cfn
−2/3 log log n, (14)

where Cf is a constant dependent on f .

Proof Outline. We use Theorem 2 to bound the expected redundancy for fixed se-
quences of switch-points. Our bound then arises from the additional cost of encoding
the switch-points. This would take O(n1/3 log n) bits if we were to encode them ex-
actly. However, taking α = 2 we get by Lemma 3 that it is sufficient to specify the
logarithm of the switch-points to integer precision, which reduces their codelength to
O(n1/3 log log n).

An example of a mass function w that meets the requirements of the theorem is
w(n) = 2−L∗(n+1), where L∗(n) denotes the codelength of n for the universal code for
the positive integers. L∗(n) = c+log n+log log n+ . . . for n ∈ Z

+, where the sequence
of nested logarithms includes all positive terms, Z

+ denotes the positive integers and
c ≈ 1.5 is a positive constant [7].

5 Discussion

Related Work The idea of universal coding and prediction is to construct a “uni-
versal” predictor that performs nearly as well as the best single predictor in some given
comparison class of individual predictors. The switch-code embodies a prediction strat-
egy that, in some situations, performs considerably better. Namely, it aims to perform
nearly as well as the best sequence of different predictors in the given class. The idea
to construct prediction strategies that perform nearly as well as the best sequence of
different predictors, rather than the best single predictor, is not at all new. It was
considered earlier, by, for example, Bousquet and Warmuth [1]; in a data compression
context, a similar idea was explored by Volf [11].

The main difference from these earlier works is that the switch-code has been specif-
ically designed for settings where we would normally consider twice-universal coding.
Then it commonly happens that the optimal predictor depends on the sample size,
where, as the sample grows, the model on which to base the optimal predictor becomes
more and more complex; and this phenomenon is exploited by the switch-code. In con-
trast, [1] describes a prediction strategy that is optimized for the situation where the
optimal predictor changes over time in completely arbitrary ways, but not too often.

In contrast to standard universal codes, the switch-code selects a model not just
by evaluating the overall past performance of a predictor, but also by considering its
“local” behaviour compared to competing predictors, which makes it related to leave-
one-out cross-validation [4]. Thus, it implicitly estimates not just the past behaviour,
but also the future behaviour of each predictor. The fact that the two are related, but
different, is investigated from a Bayesian perspective by Chickering and Heckerman [2].
In this context, we should also point out a note by MacKay [6] on the relation between
Bayesian model comparison and leave-one-out cross-validation, where he predicts that
“cross-validation would be the better method for predicting generalisation error”.



Future Work Twice-universal prediction is commonly applied not just in statistical
model selection and density estimation (which we considered here), but also in data
compression. For example, the celebrated context-tree-weighting (CTW) [12] algorithm
for data compression may be viewed as an instance of twice-universal prediction. Thus,
it may be the case that some versions of the switch-code may improve state-of-the-art
data compressors such as CTW. We are currently investigating this possibility.
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