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Summary

To measure the quality of predictions we need a framework.
Two standard ones, which seem quite different, are
statistical learning and sequential prediction. Some
relations between these two frameworks are known, but the

theory to characterize fast rates of convergence is
completely distinct. We bridge this gap by introducing the
unifying concept of stochastic mixability, which jointly
takes into account the loss function, the hypothesis class
and the underlying distribution.

Statistical Learning
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A(f, ) = Exyympe [AY; F(X)) = (Y, £5(X))] = O(n~?)
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Fast rates of convergence O(n~"/(?*~1)) are possible if the
margin condition

oV (f, [*)F < d(f, f*) for all f € F

IS satisfied with parameters « > 1,¢, > 0. [e.g. Tsybakov,
2004] (Smaller ~ is better.)

Stochastic Mixability = Margin Condition

Thm [x = 1]: Suppose the loss ¢ is bounded. Then
(¢, F, P") is n-stochastically mixable if and only if there
exists co > 0 such that the margin condition is satisfied

with x = 1.

Fe=YUlf e FLdf, f7) 2 €}
Thm [all x > 1]: Suppose the loss ¢ is bounded. Then the
margin condition is satisfied if and only if there exists a
constant C' > 0 such that, forall e > 0, (¢, F, P")is
n-stochastically mixable for 7 = Cel"~1/%

Stochastic Mixability

Stochastic mixability provides the link between fast rates in both
- statistical learning (via the margin condition),
« sequential prediction (via exp-concavity).

Setting: Predict Y from X

Data: (X1,Y1),..., (X, Yy)
Hypothesis class (model): F={f: X — A}
Loss: {: Y xA— 10,00

Density Estimation

Forget about X':
F C A = {probability

densities on )}
(y,p) = —logp(y)

Classification
Y = {071}7 A = {071}

1 ify+#a

0 ify=a
f(y,a){ Y

Definition
Letn > 0. Then (¢, F, P")is n-stochastically mixable if

i e_ng(yaf(X)) |
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for all f € F

where f* = argmin E( x yy.p« [£(Y, f(X))] is the best f in the model.
feF

Remark: Special case already known in (Bayesian) density estimation
under misspecification [Li, 1999, Kleijn and vdVaart, 2006]

Geometric Interpretation
of the Margin Condition

Margin Condition = Stochastic mixability = convexity of the set

p* p* Pr(n) = {e—nﬁ(Y,f(X)) | feF)

relative to P™.

Example: in density estimation
Pr(l) =F
= {probability densities}

Not stochastically mixable

Stochastically mixable

Sequential Prediction

Forrounds t=1,...,n:
1. K experts predict f;, ..., f
2. Predict (z+, y:) by choosing f;
3. Observe (z:, y:)

Regret = %Zé(yt, fola)) = min =S by, fE ()
t=1

Best possible worst-case regret is O(1/n) if and only if the
loss is mixable = exp-concave. [Vovk, 1995]

A loss is n-mixable if for any distribution ™ on A there

exists a prediction a, € A such that
i 6—775(2%14) 1

e—1mt(y,ar)

EAsox <1 for all y.

Stochastic Mixability = Mixability (under conditions)
Fran = {all functions from X to A}

Thm: Suppose the loss /is proper and X is discrete.
Then ¢ is n-mixable if and only if (¢, e, P*) IS
n-stochastically mixable for all P~

» Proper losses are e.g. 0/1-loss, log-loss, squared loss
- Theorem generalizes to other losses that satisfy two
technical conditions
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