
Statistical Learning

 
Fast rates of convergence                        are possible if the 
margin condition 

is satisfied with parameters                  . [e.g. Tsybakov, 
2004] (Smaller    is better.)
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Sequential Prediction
For rounds                    :

1. K experts predict 
2. Predict            by choosing        
3. Observe              

Regret = 

Best possible worst-case regret is             if and only if the 
loss is mixable ≈ exp-concave. [Vovk, 1995]

A loss is η-mixable if for any distribution    on     there 
exists a prediction             such that   
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Stochastic Mixability = Mixability (under conditions)

Thm: Suppose the loss   is proper and     is discrete. 
Then   is η-mixable if and only if                    is
η-stochastically mixable for all    .

• Proper losses are e.g. 0/1-loss, log-loss, squared loss 
• Theorem generalizes to other losses that satisfy two 

technical conditions
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Geometric Interpretation
of the Margin Condition
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Figure 1: The relation between convexity and stochastic mixability for log-loss, ⌘ = 1 and X = {x}
a singleton, in which case P ⇤ and the elements of PF(⌘) can all be interpreted as distributions on Y.

set, we associate a pseudo-likelihood p(y) = e�⌘l(y). Note that 0  p(y)  1, but it is generally
not the case that

R
p(y)µ(dy) = 1 for some reference measure µ on Y, so p(y) is not normalized.

Let e�⌘S
= {e�⌘l

| l 2 S} denote the set of all such pseudo-likelihoods. By multiplying (1) by �⌘
and exponentiating, it can be shown that ⌘-mixability is exactly equivalent to the requirement that
e�⌘S is convex [2, 15]. And like for the first two expressions of mixability, there is an analogous
convexity interpretation for stochastic mixability.

In order to define pseudo-likelihoods in the statistical setting, we need to take into account that the
predictions f(X) of the predictors in F are not deterministic, but depend on X . Hence we define
conditional pseudo-likelihoods p(Y |X) = e�⌘`(Y,f(X)). (See also Example 1.) There is no need to
introduce a conditional analogue of the super prediction set. Instead, let PF(⌘) = {e�⌘`(Y,f(X))
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Corollary 3. Let ⌘ > 0. Then ⌘-stochastic mixability of (`,F, P ⇤
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Proof. This follows directly from Theorem 2 after rewriting it in terms of conditional pseudo-
likelihoods.

Notice that the left-hand side of (6) equals E[`(Y, f⇤
(X))], which does not depend on ⌘.

Equation 6 expresses that the convex hull operator has no effect, which means that PF(⌘) looks
convex from the perspective of P ⇤. See Figure 1 for an illustration for log-loss. Thus we obtain
an interpretation of ⌘-stochastic mixability as effective convexity of the set of pseudo-likelihoods
PF(⌘) with respect to P ⇤.

Figure 1 suggests that f⇤ should be unique if the loss is stochastically mixable, which is almost
right. It is in fact the loss `(Y, f⇤

(X)) of f⇤ that is unique (almost surely):
Corollary 4. If (`,F, P ⇤
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Stochastic Mixability
Stochastic mixability provides the link between fast rates in both

• statistical learning (via the margin condition),
• sequential prediction (via exp-concavity).

Setting: Predict     from 
Data:
Hypothesis class (model):
Loss:

Definition
Let          . Then                is η-stochastically mixable if

where                                                         is the best    in the model.

Remark: Special case already known in (Bayesian) density estimation 
under misspecification [Li, 1999, Kleijn and vdVaart, 2006]

PF (⌘) = {e�⌘`(Y,f(X)) | f 2 F}

(X1, Y1), . . . , (Xn, Yn)
F = {f : X ! A}
` : Y ⇥A ! [0,1]

(`,F , P ⇤)⌘ > 0

relative to     . 

Example: in density estimation
PF (1) = F

= {probability densities}

Margin Condition = Stochastic mixability = convexity of the set

P ⇤

Y X

Classification

`(y, a) =

(
0 if y = a

1 if y 6= a

Density Estimation
! ! ! ! Forget about    :    

`(y, p) = � log p(y)

F ⇢ A = {probability
densities on Y}
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Summary
To measure the quality of predictions we need a framework. 
Two standard ones, which seem quite different, are 
statistical learning and sequential prediction. Some 
relations between these two frameworks are known, but the 
theory to characterize fast rates of convergence is 
completely distinct. We bridge this gap by introducing the 
unifying concept of stochastic mixability, which jointly 
takes into account the loss function, the hypothesis class 
and the underlying distribution.

rate

Stochastic Mixability = Margin Condition
Thm [         ]: Suppose the loss    is bounded. Then
                is η-stochastically mixable if and only if there 
exists           such that the margin condition is satisfied 
with         . 

Thm [all          ]: Suppose the loss   is bounded. Then the 
margin condition is satisfied if and only if there exists a 
constant             such that, for all           ,                    is
!-stochastically mixable for                         .
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