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different settings:

» statistical learning (margin condition)

* sequential prediction (mixability)
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Statistical Learning

f*=argmin E[{(Y, f(X))]
ferF

d(f, f*) = E[(Y, f(X)) = £(Y, f*(X))]
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Statistical Learning

iid s

(X1, Y1),...,(X,,Y,) ~ P

f*=argmin E[{(Y, f(X))]
ferF

A

d(f, f*) = E[L(Y, f(X)) — (Y, f*(X))] =0(n~")

* Two factors that determine rate of convergence:

1. complexity of F 2. the margin condition




Definition of Stochastic Mixability

* Let n > 0. Then (¢, F, P*) is n-stochastically mixable if
there exists an f* € F such that

I 6_77€(Y7f(X)) 1

E eV 0) <1 for all f € F.

* Stochastically mixable: this holds for some 1 > 0




Immediate Consequences

E e_ng(yaf(X)) 1
eV O) < | for all f € F

* f*minimizes risk over F: f* = argmin E[/(Y, f(X))]
ferF

* The larger n, the stronger the property of being 7-
stochastically mixable




Density estimation example 1

* Log-loss: £(y,p) = —logp(y), F = {pg | 6 € O}

* Suppose pg« € F is the true density

* Then forn = 1 and any pg € F :

i 6—775(5/7299) ]

e_ne(yap9* )
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Density estimation example 2

» Normal location family with fixed variance o°:

F={N(po*)lpeR}  P* =N 7%

* 1) -stochastically mixable for n = o°/7°:

—nl(Y,
E{e na(y pu)) = Vorr /6_#<y—“>2+2%2<y—u*>2—2%2<y—u*>2dy
6_77 P * T™T

Vo2
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A

o If f is empirical mean: E[d(f, f*)]
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Margin condition

» For 0/1-loss implies rate of convergence O(n~"/(2#=1)

: | Tsybakov, 2004]
* So smaller ~ is better




Stochastic mixability«— margin

oV(f, f*) <d(f,f*)  forall feF

* Thm [+ = 1]: Suppose ¢ takes values in [0, V]. Then (¢, F, P*)is
stochastically mixable if and only if there exists ¢, > 0 such
that the margin condition is satisfied with « = 1.




Margin condition with k > 1

Fe={"tulrer|df,f*) > €}

* Thm [all < > 1]: Suppose ¢ takes values in [0, V| Then the
margin condition is satisfied if and only if there exists a
constant C' > Osuch that, for alle > 0, (¢, Fc, P*)is n-
stochastically mixable forn = Ce"~1/%,
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Sequential Prediction with Expert Advice

* Forroundst =1,...,n:
o K experts predict ftl, I ftK
e Predict (,fljt7 yt) by ChOOSing ft

* Observe (¢, y;)
Feo A i :
* Regret = 5 Zg(yta el ) = mkm i Zé(yt, ftk(wt))
t=1 t=1

* Game-theoretic (minimax) analysis: want to guarantee small regret
against adversarial data




Sequential Prediction with Expert Advice

* Forroundst =1,...,n:
* K experts predict f’tl, g ftK
» Predict (7, y;) by choosing #,

* Observe (x¢, Y¢)

e : b :
* Regret = 5 Zé(yt, ft(lli‘t)) B Hlklﬂ ﬁ Zg(?/ta ftk(xt))
=1l =il

» Worst-case regret = O(1/n) iff the loss is mixable! [vovk, 1995]




Mixability

* Aloss /: Y x A — |0, 0] is n-mixable if for any
distribution 7 on A there exists an action a., € A such that

i 6—"75(%14) ]

| Dy o=t < 1 for all y.

* Vovk: fast O(1/n)rates if and only if loss is mixable




(Stochastic) Mixability

* Aloss /: Y x A — |0, 0] is n-mixable if for any
distribution 7 on A there exists an action a., € A such that

i 6—"75(%14) ]

| Dy o=t < 1 for all y.

* (¢, F, P*)is n-stochastically mixable if

0 e_ng(yaf(X)) 7

Ex y~p- sl <1 for all f € F.
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(Stochastic) Mixability

* Aloss /: Y x A — |0, 0] is n-mixable if for any
distribution 7 on A there exists an action a., € A such that

1

Uy, ar) < —— ln/e_ne(y’a)ﬂ(da) for all y.

N

* Thm: (¢, F, P*) is n-stochastically mixable iff for any
distribution 7mon F there exists f* € Fsuch that

B[((Y, (X)) S Bl In [ "0/ CDn(ag)
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Fran = {all functions from X to A}

* Thm: Suppose /¢ is a proper loss and X is discrete. Then ¢
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mixable for all P




Equivalence of Stochastic

Mixability and Ordinary Mixability

Fran = {all functions from X to A}

* Thm: Suppose /¢ is a proper loss and X is discrete. Then ¢
is n-mixable if and only if (¢, Fg,1, P*) is n-stochastically
mixable for all P

* Proper losses are e.g. 0/1-loss, log-loss, squared loss

» Thm generalizes to other losses that satisfy two technical
conditions
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Density estimation example 1

* Log-loss: £(y,p) = —logp(y), F = {pg | 6 € O}

* Suppose pg« € F is the true density

* Then forn = 1 and any pg € F :

i 6—775(5/7299) ]

e_ne(yap9* )




L.og-loss example 3 (convex F)

* Log-loss: £(y,p) = —logp(y), F = {pe | 0 € O}

* Suppose model misspecified: pyg~ = arg min E|— log pg(Y)]
is not the true density poEF

* Thm [Li, 1999]: Suppose F is convex. Then

/ po(y) P*(dy) <1 for all pg € F

po- (y)

* Convexity is common condition for convergence of
minimum description length and Bayesian methods




L.og-loss and convexity forn =1




L.og-loss and convexity forn =1

* Thm: (¢, F, P*) is n-stochastically mixable iff for any
distribution mon F there exists f* ¢ Fsuch that

1

E[((Y, /" (O] SB[ In [ &0/ n(a )

N




L.og-loss and convexity forn =1

* Thm: (¢, F, P*) is n-stochastically mixable iff for any
distribution mon F there exists f* ¢ Fsuch that

1

E[((Y, f*(X))] < B[~ In / eSO 1 (d f)]

N

* Corollary: For log-loss, 1-stochastic mixability means

n E|—1 Y= n E|[—1 Y
min [—Inp(Y)] B —Inp(Y)],

where CO(]: ) denotes the convex hull of F.




L.og-loss and convexity forn =1

Not stochastically mixable Stochastically mixable

* Corollary: For log-loss, 1-stochastic mixability means

nE[—Inp(Y in E[—Inp(Y)],
Lot —Inp(Y)] = —Inp(Y)]

where CO(]: ) denotes the convex hull of F.




Convexity interpretation with

pseudo-likelihoods

» Pseudo-likelihoods: p., (Y |X) = e~ 7>/ (X))
Pr(n) =wia(YIX) | f€F}

* Corollary: (¢, F, P*) is n-stochastically mixable iff

min E[-1lnp(Y|X)] = min E
pEPFr(n) [ 4 p( ‘ )] pEco(Px(n)) [
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Adapting to the margin /7

* Penalized empirical risk minimization:

f—argmm{ ZZ (Ys, f(X5)) + A- pen(f)}

feF

* Optimal A < 1/n depends on 7/ the margin
» Single model: take pen(f) = const. no need to know A

* Model selection: F = U F.., pen(f) = pen(m) # const.




Convexity testing




Convexity testing

* Corollary: (¢, F, P*) is n-stochastically mixable iff

min E[->lnp(Y|X)]= min E[-:
pEPF(n) & peco(Pr(n)) L




Convexity testing

* Corollary: (¢, F, P*) is n-stochastically mixable iff

min E[--lnp(Y|X)]= min E]|
pEPF(n) & peco(Pr(n))

* [Griinwald, 2011]: pick the largest 5 such that

n n

_% IHP(YTi’Xz‘) = min 1 Z —% 1I1p(Y7;]XZ') — something

— peco(Px(n)) " P

where “something” depends on concentration inequalities and
penalty function.
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