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Iwo Desirable Properties in
Model Selection

* Suppose Mz, ..., Mk are statistical models
(sets of probability distributions: My = {pg|0 € O })

* Consistency: If some p* in model My-generates the data, then My-is
selected with probability one as the amount of data goes to infinity:.

* Rate of convergence: How fast does an estimator based on the
available models converge to the true distribution?

AIC-BIC Dilemma
Consistent | Optimal rate of convergence

BIC, Bayes, MDL Yes No
AIC, LOO Cross-validation No Yes
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Bayesian Prediction

* Given model My = {py|0 € O} with prior wy and data

" = (z1,...,Zn), the Bayesian marginal likelihood is
pr(x™) = p(a™|My) ::/ po(x™)w(0)do
O

* Given My, predict with estimator

n—l—l)

Pr(Tnt1]z"™) 5 (27) > Po(Tn+1|x" )wi(0]z")




Bayes lactors and MDL.
Model Selection

* Suppose we have multiple models M, M, ...

+ Bayes factors: Put a prior m on model index k and choose k(z") to
maximize the posterior probability

e
L S S

+ k(z")is minimizing

—log pr(2") — logw(k) ~ — log pr(2™)
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Minimum Description Length (MDL)



Fxample: Histogram Density

KEstimation

M. = {pp|0 € O C R*}

+ LI.D. data in interval [0,1]

* Given k, estimate density by the estimator in the figure
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* This is equivalent to py for conjugate Dirichlet(1,...,1) prior

+ How should we choose the number of bins k?

* Too few: does not capture enough structure

* Too many: overfitting (many bins will be empty)

* [Yu, Speed, ‘92]: Bayes does not achieve the optimal rate of

convergence!




.V Selects More Bins than Bayes
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.V Predicts Better than Bayes

Prediction error in log loss at sample size n: —log pj, ) (@B 25

n
cumulative prediction error: Z —log Py, i1 (ol )
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.V Predicts Better than Bayes...

# bins selected
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* Density not a histogram, but can be approximated arbitrarily well
* LOO-CV, AIC converge at optimal rate

* Bayesian model selection selects too few bins (underfits)!



... but CV 1s Inconsistent!

* Now suppose data are sampled from the uniform distribution

# bins selected
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#* LOO cross-validation selects 2.5 bins on average: it is inconsistent!
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Logarithmic Loss

If we measure prediction quality by log loss

loss(p, x) := — log p(x)

then minus log likelihood = cumulative log loss:

n

—logp(z1, .-, %n) = Z — logp(a:i\xi_l)
=

1

where '™ ! = (21,...,2i_1)

Proof. Take the negative logarithm of the chain rule: p(z1,...,2,) =



The Most Important Shide

Bayes factors and MDL pick the k minimizing

n

—log pr(x1,...,2,) = Z 73 10gﬁk($i’$i_1)
=

Prediction error for model M, at sample size i!

Prequential/predictive MDL interpretation:
select the model My such that, when used as a sequential prediction
strategy, Pr minimizes cumulative sequential prediction error

[Dawid "84, Rissanen '84]



Example: Markov Chains

Natural language text: “The Picture of Dorian Gray” by Oscar Wilde
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Compare the first-order and second-order Markov chain models

on the first n characters in the book,
with uniform priors on the transition probabilities
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Example: Markov chains

Compare the marginal likelihoods
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(green line equals the log of the Bayes factor)



Example: Markov chains
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Example: Markov chains
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The Catch-up Phenomenon

* Given “simple” model Miand a “complex” model M
* Common phenomenon: for some sample size s

* simple model predicts better if n < s

* complex model predicts better if n >s

* Catch-up Phenomenon: Bayes/MDL exhibit inertia

* complex model has to “catch up”,
so we prefer simpler model for a while even after n > s!

* Remark: Methods similar to Bayes factors (e.g. BIC) will also exhibit the catch-up
phenomenon. Bayesian model averaging does not help either!



Example: Markov chains
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Can we modify Bayes so as to do as well as the black curve?



Example: Markov chains
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Almost!
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The Best of Both Worlds

* Catch-up phenomenon: new explanation for poor predictions of
Bayes (and other BIC-like methods)

* We want a model selection/averaging method that, in a wide variety
of circumstances,

* is provably consistent,

+ provably achieves optimal convergence rates

* But it has previously been suggested that this is impossible!
[Yang "05]



The Best of Both Worlds

* Catch-up phenomenon: new explanation for poor predictions of
Bayes (and other BIC-like methods)

* We want a model selection/averaging method that, in a wide variety
of circumstances,

* is provably consistent,

+ provably achieves optimal convergence rates

* But it has previously been suggested that this is impossible!
[Yang "05]

* So we have to be careful to avoid impossibility results...



The Switch Distribution

* To avoid the catch-up phenomenon we would like to switch between
models at switch-point s:

S n
pow(a”|s) = | [ pr(zila'™") x [ palwsla)
i=1 i=s+1
* Q. But how do we know when to switch?!



The Switch Distribution

* To avoid the catch-up phenomenon we would like to switch between
models at switch- pomt st

n
Paw (2 le (il ) x ]| pelwla’™)

1=s+1
* Q. But how do we know When to switch?!

* A. Switch distribution: do not put a prior m on models, but on when
to switch between models:

R e €t

s>0



The Switch Distribution

* To avoid the catch-up phenomenon we would like to switch between
models at switch- point st

n
Pow (2 le (il ™) x | po(ailz®")
1=s+1
* Q. But how do we know When to switch?!

* A. Switch distribution: do not put a prior 7 on models, but on when
to switch between models:

R e €t
s>0

* Generalizes to an arbitrary (unknown) number of switches between
any countable number of models.



The Switch Distribution

* To avoid the catch-up phenomenon we would like to switch between
models at switch- point st

n
Paw (2 le (il ) x ]| pelwla’™)

1=s+1
* Q. But how do we know When to switch?!

* A. Switch distribution: do not put a prior 7 on models, but on when
to switch between models:

R e €t

s>0

* Generalizes to an arbitrary (unknown) number of switches between
any countable number of models.
* For many model classes, method is computationally feasible.



Switching Resolves the Catch-up
Phenomenon
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* Pay less than 2log(s + 1) = 21og(50001) ~ 32 bits for not knowing s
* Gain more than 20 000 bits by switching
* Almost as good as knowing in advance when to switch!



Switch Distribution 1s Consistent
for Histograms
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Switch Distribution Predicts Well
with Histograms
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Theorem: Switching 1s Consistent

+ Let My, My, ... be models with priors w;,ws, ... on parameter sets
©1, 05, ... and marginal likelihoods p1, P2, . . .

*+ Suppose p1, D2, - - - are asymptotically sufficiently distinguishable in

a suitable sense.

+ For example, it is sufficient if the models consist of i.i.d. or Markov distributions, the
parameter sets ©1, ©,, ... are of different dimensionality and the priors have a
density w.r.t. Lebesgue measure.

+ Then, for all k*and all p* € My, except for a subset of M. with prior
wprobability 0, the switch distribution is consistent in that

X"y =1

lim  pgy (Mg
n— 00
with p™probability 1.



Setting for Prediction

* Let M1, Ma,...bei.i.d. models that can approximate a large set of
i.i.d. distributions M *arbitrarily well (in Kullback-Leibler
divergence)

* For example, M™ may be the set of all densities on [0,1] with bounded
derivatives and M7, M, ... may be histograms

* Suppose data X" = (X3, ..., X,,) are i.i.d. with distribution p* € M"*



Risk

* Let pxn—1 be the prediction of outcome X,, for some estimator p
* For example, p may be based on the Bayesian marginal likelihood

* The risk is the expected divergence of the predictions of p from p*

Tn(p*,p) = EXn—le* D(p*Han—l)

* We take D to be the Kullback-Leibler divergence:

D(p*||pxn-1) = Ex_~p=|loss(pxn-1, X, ) — loss(p®, X,)]



Cumulative Risk

The cumulative risk is

n

Ra(p*,p) =Y 71i(p*,p) =Exn [ Y loss(pxi-1,X;) — Y loss(p*, X;)]
i=1

Motivation:

* Appropriate when the goal is sequential prediction

* Can convert to ordinary risk via online-to-batch conversion
| Yang, Barron, ‘99]

* Equals redundancy in universal coding

* Avoids Yang’s impossibility results




Theorem: Switching Achieves
Minimax Cumulative Rate

* Let p1, pa, ... be estimators for the models M, Mo, ...
An oracle chooses model k° = k°(p*, X™), knowing the true
distribution and the data.

* Suppose the cumulative risk of the oracle grows fast enough that
(logn)***

— > 0
SUP,»  Aq+ Lon (D* Do)

for some o > 0 and the effective number of models is polynomial inn,
i.e. k°(p*, X™) < nf for some beta > 0.

* Then the switch distribution, with suitable prior 7, predicts at least

as well as the oracle: 3
4 Supp*e,/\/l* Rn (p 7psw)
lim sup

Ty ] b
n—oo SUDPpx e aqx Lon (D*, Dio)
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Conclusion

* Bayes and other BIC-like methods select the model that minimizes
cumulative prediction error.

* If the best-predicting model depends on the sample size, then they
suffer from the catch-up phenomenon.

* This explains the AIC-BIC dilemma.

* The switch-distribution provably resolves the catch-up phenomenon:

Consistent | Optimal rate of convergence

BIC, Bayes, MDL Yes No
AIC, LOO Cross-validation No Yes
Switch distribution Yes Yes (for cumulative risk)
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Bayesian Prediction

* Given model My = {py|0 € O} with prior wy and data

n

" = (z1,...,Zn), the Bayesian marginal likelihood is
pr(x™) = p(a™|My) ::/ po(x™)w(0)do
O

* Given My, predict with estimator

(")

Pr(Z
Tt |2 — Tri1lx we(0|z™)do
Pelennle”) = B = [ po(anaala” s 8la”)

# If k is unknown, Bayesian model averaging also puts a prior mon k:

P(Try1|z") Zpk (Tni1|z”)m(k|z"™)



