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Abstract

Suppose we want to predict both the electricity consumption for K regions individually and the
total consumption for all the regions together. For operational reasons, it is sometimes required that
the prediction for the total consumption is equal to the sum of the predictions for the individual
regions, but this constraint might prevent us from making the best possible predictions. In this work,
we therefore introduce a new way to work around this restriction, for the case of quadratic loss. The
idea is to adjust the regional predictions slightly so that their sum is closer to the prediction we
would like to make for the total consumption. The amount of adjustment is determined in a game-
theoretically optimal way.

1 Introduction

Consider the problem of predicting the electricity consumption for K regions, and also the total con-
sumption of all the regions together. If our prediction for region k ∈ {1, . . . ,K} is ŷk and the true
consumption is yk, then our loss for that region will be measured by the squared loss

`k(yk, ŷk) = ak(yk − ŷk)2,

where ak > 0 is a weighting factor that determines the relative importance of the region. Similarly, if
we predict ŷ∗ for the total consumption y∗ =

∑K
k=1 yk, then our loss is

`∗(y∗, ŷ∗) = a∗(y∗ − ŷ∗)2,

again with a∗ > 0. Thus, if y = (y1, . . . , yk) and ŷ = (ŷ1, . . . , ŷk, ŷ∗), then our total loss is

`(y, ŷ) =

K∑
k=1

`k(yk, ŷk) + `∗
( K∑
k=1

yk, ŷ∗
)
. (1)

We will assume that ideal predictions ȳ = (ȳ1, . . . , ȳK , ȳ∗) are given, where ȳk is the ideal prediction
for region k, and ȳ∗ is the ideal prediction for the total consumption. The problem we aim to solve is
that in general

∑
k ȳk may be different from ȳ∗, but, when we make our actual predictions ŷ = (ŷ1, . . .,

ŷK , ŷ∗), we have to satisfy the operational constraint

ŷ∗ =

K∑
k=1

ŷk. (2)

This is a common constraint in the industry; for example, it was imposed in the Global Energy Forecasting
Competition 2012 on Kaggle.com.

Thus we need to map the ideal predictions ȳ to real regional predictions ŷ that satisfy the constraint
(2). In Section 4 we will argue that this is not a trivial problem, because it is indeed realistic that our
best prediction for the total ȳ∗ will be different from

∑
k ȳk.

Related Work Our problem represents a special case of hierarchical time series (HTS) forecasting, as
discussed by Hyndman et al. [2011]. But because we will analyse the problem in a game-theoretic way
(instead of making distributional assumptions about the true consumptions y), we arrive at a different
solution (see Section 2). We clarify the link between the predictions of the two methods in Section 3,
and finally, in Section 4, we compare their performance on simulated data.
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2 Game-Theoretically Optimal Predictions

We take the ideal predictions ȳ to be our gold standard, so ideally we would like to get loss `(y, ȳ), but in
reality we will get loss `(y, ŷ) = `(y, (ŷ1, . . . , ŷK ,

∑
k ŷk)). (Here we have identified ŷ with (ŷ1, . . . , ŷK),

which is possible because of the constraint (2).) We propose to make the difference between `(y, ȳ) and
`(y, ŷ) as small as possible when y is chosen in an adversarial way. That is, we choose ŷ to achieve

V = inf
ŷ

sup
y

{
`
(
y, (ŷ1, . . . , ŷk,

∑
k

ŷk)
)
− `(y, ȳ)

}
. (3)

The link with game theory is that this is the optimal strategy in a zero-sum game, in which we move
first by choosing ŷ and then our opponent responds by choosing y.

If we allow y to be unbounded, then V = ∞, so this strategy is of no use to us. Luckily, however,
in practice it seems reasonable to assume that our ideal predictions ȳ will not be too bad, and that the
true consumptions y will fall inside the confidence bands

yk ∈ [ȳk −Bk, ȳk +Bk] (4)

for some positive constants B1, . . . , BK . Notice that these confidence bands are symmetric around the
ideal predictions ȳ1, . . ., ȳK .

Example 1. In the special case that B1 = · · · = BK = B and a1 = · · · = aK = a, such that all the
regions are treated the same way, the solution to (3) can be computed in closed form and is given by

ŷk = ȳk + max
(
−B,min

{
B,

1
a

1
a∗

+K 1
a

z
})
,

where z = ȳ∗ −
∑

k ȳk. We see that the predictions ŷk follow a single equation that depends only on the
weights of the regions and on z, except that they are truncated to fall inside the confidence bands (4).

In general, no closed-form solution to (3) is available, but with some work it can be shown that the
optimal predictions can be determined by solving a certain least squares problem with L1-regularization,
which can be done efficiently using standard software to compute the LASSO [Tibshirani, 1996] (in its
unconstrained formulation).

3 Interpretation as Approximate Projection

If the sizes of the confidence bands Bk are sufficiently large, it can be shown that the optimization
problem (3) is approximately equal to an optimization problem with solution

ŷk = ȳk +
1
ak

1
a∗

+
∑

k
1
ak

z, (5)

where z = ȳ∗ −
∑

k ȳk. (See also Example 1.) It turns out that this choice for ŷ can be given another
interpretation as well: it is also the solution to the minimization problem

inf
ŷ

{ K∑
k=1

ak(ŷk − ȳk)2 + a∗
( K∑
k=1

ŷk − ȳ∗
)2}

,

which can be interpreted as an L2-projection of ȳ unto the hyperplane specified by the constraint (2)
that takes the regional weights ak and a∗ into account.

In our context, the HTS solution proposed by Hyndman et al. [2011] reduces to ŷk = ȳk + 1
K+1z.

Comparison with (5) reveals that this corresponds to the same L2-projection, except that it assumes all
the regional weights to be equal.

4 Experiment with Simulated Data

Data To compare the performance of our method with HTS, we simulate data for two regions:

y1 = 1 + 5x+ σξ + τζ1 y2 = 1 + 5x− σξ + τζ2,
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where ξ, ζ1 and ζ2 are independent random variables that are uniformly distributed on [−1, 1] and σ
and τ are nonnegative scale parameters. Notice that the noise that depends on ξ cancels from the total
consumption y1 + y2, which makes the total consumption easier to predict than the individual regions.
We sample a train set of size 100 for the fixed design x ∈ {1/100, 2/100, . . . , 1} and a test set of the same
size for x ∈ {1 + 1/100, . . . , 2}.

Fitting Models on the Train Set To construct our ideal predictions ȳ1 and ȳ2, we use the LASSO
with cross-validation to calibrate the amount of penalization. To estimate the confidence bands B1 and
B2, we (somewhat crudely) use the maximum absolute value of the residuals in each region.

If we would also use the LASSO directly to predict the total consumption y1 + y2, it might not do
better than simply using the bottom-up predictor ȳ1 + ȳ2. We can be sure to do better, however, by
adding ȳ1 and ȳ2 as covariates, such that we fit functions of the form

β0 + β1 ∗ x+ β2ȳ1 + β3ȳ2.

Moreover, we introduce prior knowledge into the LASSO by regularizing by |β0|+ |β1|+ |β2−1|+ |β3−1|
instead of |β0|+ |β1|+ |β2|+ |β3|, which would make it behave like the bottom-up predictor in the absence
of any data.
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Figure 1: Test loss for HTS minus test loss for our method

Evaluation on the Test Set On the test set, we first use the fitted regression parameters from the
Lasso to get ideal predictions ȳ1 and ȳ2 for the regions. Then we use these regional predictions as
covariates to get the ideal prediction ȳ∗ for the total consumption using the parameters (β0, β1, β2, β3)
we found on the train set. We now compute the test set loss for our method (L) and for HTS (Lhts) by
summing (1) over the test set.

Results It remains to choose the weights a1, a2 and a∗, and the scales σ and τ for the noise variables.
We repeat the experiment 100 times for different choices of these parameters. The different values for a1,
a2 and a∗ represent different possible electricity network configurations, and are normalized to sum to 1,
because scaling them just scales all losses by the same factor. Figure 1 shows box plots that summarize
the values of Lhts − L during these 100 repetitions.

We see that our method outperforms HTS in most cases. A notable exception is when a1 = a2 =
a∗ = 1/3, for which HTS equals (5), and apparently the bounds B1 and B2 are sufficiently large for our
method to be the same as well (see the discussion in Section 3). So in this case the methods coincide.
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