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Statistical Learning

(
Y1

X1

)
, . . . ,

(
YN

XN

)
independently distributed ∼ P

↓
f̂ ∈ F (proper learning)

↓
Small risk R(f̂ ) = E

(X,Y )∼P
[`(X,Y , f̂ )]

Compared to minimizer f ∗ = arg min
f∈F

R(f ) of risk in model F

Minimax Rate:
Rate for most difficult possible P

min
f̂

max
P

E[R(f̂ )]− R(f ∗)
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Classification

Given X ∈ Rd , predict binary label Y ∈ {0, 1}

`(X,Y , f ) =

{
0 if f (X) = Y ,

1 if f (X) 6= Y

R(f ) = P(f (X) 6= Y )

Minimax Rate:
For worst-case P, learning is slow:

E[R(f̂ )]− R(f ∗) �
√

complexity(F)

N
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But Faster Rates Are Common

I Worst-case distribution: P(Y = 1 |X) very close to 1
2

I But then learning is (almost) useless!

The Margin Condition: [Tsybakov, 2004]

I Common case: P(Y = 1 |X) not too close to 1
2

I Assume f ∗(X) = fB(X) = arg maxy P(Y = y |X)

I Learning can be much faster depending on α ∈ [0,∞]:

E[R(f̂ )]− R(f ∗) = O

(
complexity(F)

N

) 1+α
2+α

4 / 25



The Margin Condition
P

(Y
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1
|X

)

 0

 0.5

 1

X

 0

 0.5

 1

X

 0

 0.5

 1

X

easy moderate hard
α =∞ α = 1 α = 0

PX

(
|P(Y |X)− 1

2 | ≤ t
)
≤ ctα
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Fast Rates in Misspecified Regression
Bounded regression: given X ∈ Rd , predict Y , f (X) ∈ {−B,+B}

`(X,Y , f ) = (Y − f (X))2, fB(X) = E[Y |X]

fB fB

f ∗ f ∗
f ∗

F
F

Non-convex Convex
Projection not unique Projection unique

Slow rate: O( 1√
N

) Fast rate: Õ( 1
N )

Conclusion: convex F always safe to get fast rates [Lee et al., 1998].
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Fast Rates for Misspecified Density Estimation I
Estimate the best density from P = {pf | f ∈ F}

`(Y , f ) = − log pf (Y )

Assume all densities uniformly bounded: 1/c ≤ pf (Y ) ≤ c

p
p

pf ∗ pf ∗
pf ∗

P
P

Non-convex Convex
ERM gets slow rate ERM gets fast rate:

depending on P Õ( complexity(P)
N )
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Fast Rates for Misspecified Density Estimation II

Fast rates follow from the following supermartingale-like property:

E
P

[
pf
pf ∗

]
≤ 1 for all pf ∈ P. (1)

NB. If p ∈ P, then pf ∗ = p, so EP

[
pf
pf ∗

]
= 1.

Lemma ([Li, 1999])

Convexity of P implies (1).

Proof.

I For arbitrary pf , let pλ = (1− λ)pf ∗ + λpf and
h(λ) = E[− log pλ(Y )].

I Convexity: h is minimized at λ = 0, so 0 ≤ h′(0) = E
P

[
pf
pf ∗

]
− 1.
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Online Learning

For t = 1, . . . ,T :

1. Predict parameter vector f̂t ∈ F ⊂ Rd

2. Observe outcome (Xt ,Yt) and update f̂t → f̂t+1

Goal: achieve small regret

Regretf
∗

T =
T∑
t=1

`(Xt ,Yt , f̂t)−
T∑
t=1

`(Xt ,Yt , f
∗)

with respect to the ‘best’ parameters f ∗ ∈ F .
Assume losses bounded and convex in f , and F convex with bounded
diameter.

Minimax Rate:
Rate for most difficult possible data:

min
f̂1

max
X1,Y1

min
f̂2

max
X2,Y2

· · ·min
f̂T

max
XT ,YT

max
f ∗∈F

Regretf
∗

T = O(
√
T )
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Fast Rates for Exp-concave and Mixable Losses

We can get a much faster O( d
η logT ) rate in the following cases:

Exp-concavity:

f 7→ e−η`(Xt ,Yt ,f ) should be concave.

E.g. logistic loss: log(1 + e−Yt f
ᵀXt )

Mixability:
Without knowing Xt ,Yt , we can map any probability distribution π on F
to a prediction fπ ∈ F such that

e−η`(Xt ,Yt ,fπ) ≥
∫

e−η`(Xt ,Yt ,f )dπ(f )

I Intuition: allows being unsure

I Exp-concavity is a special case: fπ = Eπ[f ].
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Welcome to the Zoo

How can we understand all these different
cases?

I We made a map. . .

I . . . but the zoo is huge and the routes are
long.

I The summary: for bounded losses,
they are all special cases of (more or less)
one central condition.

I Let me give you a tour.

A full map of the zoo
[Van Erven, Grünwald,

Mehta, Reid, and
Williamson, 2015]
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The Central Condition
Central Condition
For some η > 0,

E
P

[
e−η
(
`(X,Y ,f )−`(X,Y ,f ∗)

)]
≤ 1 for all f ∈ F .

I Controls the left tail of `(X,Y , f )− `(X,Y , f ∗).

Specialize to Density Estimation

I `(Y , f ) = − log pf (Y )↔ pf (Y ) = e−`(Y ,f )

I For η = 1, CC specializes to EP

[
pf (Y )
pf ∗ (Y )

]
≤ 1.

I Convex P: minπ(f ) E[− log
∫
pf (Y )dπ(f )] = minf E[− log pf (Y )].

Theorem

For general losses, CC is equivalent to pseudo-probability convexity:

min
π(f )

E[− log

∫
e−η`(X,Y ,f ) dπ(f )] = min

f
E[− log e−η`(X,Y ,f )]
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Understanding Online Learning Conditions
Mixability
Without knowing Xt ,Yt , we can map any probability distribution π on F
to a prediction fπ ∈ F such that

e−η`(Xt ,Yt ,fπ) ≥
∫

e−η`(Xt ,Yt ,f )dπ(f )

`(Xt ,Yt , fπ) ≤ − 1
η log

∫
e−η`(Xt ,Yt ,f )dπ(f )

Stochastic Mixability
Without knowing P, we can map any probability distribution π on F to a
prediction fπ ∈ F such that

E
P

[`(X,Y , fπ)] ≤ E
P

[
− 1
η log

∫
e−η`(X,Y ,f )dπ(f )

]

Theorem

Stochastic mixability implies the central condition, and under (somewhat
restrictive) technical conditions the reverse also holds.
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Understanding Regression
Bounded regression: given X ∈ Rd , predict Y , f (X) ∈ {−B,+B}

`(X,Y , f ) = (Y − f (X))2

fB fB

f ∗ f ∗
f ∗

F
F

Proposition

For convex F , the squared loss is exp-concave with η ∝ 1/B2.

exp-concavity → mixability → stochastic mixability → central condition
14 / 25



Another Way to See the Central Condition

Abbreviate ∆f = `(X,Y , f )− `(X,Y , f ∗). Then

E[∆f ] = R(f )− R(f ∗)

Central Condition

E[e−η∆f ] ≤ 1

(B , 1)-Bernstein Condition
The closer R(f ) to R(f ∗), the smaller the variance:

E[∆2
f ] ≤ B E[∆f ]

Proposition

For bounded losses, CC and (B, 1)-Bernstein are equivalent for B ∝ 1/η.

Proof.
By e−z ≈ 1− z + 1

2z
2 applied to z = η∆f .
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Understanding Classification

P
(Y

=
1
|X

)

 0

 0.5

 1

X

 0

 0.5

 1

X

 0

 0.5

 1

X

easy moderate hard
α =∞ α = 1 α = 0

PX

(
|P(Y |X)− 1

2 | ≤ t
)
≤ ctα (α-margin)

Lemma (Tsybakov)

If fB ∈ F . Then, for 0/1-loss, α-margin is equivalent to the
(B, β)-Bernstein condition:

E[∆2
f ] ≤ B E[∆f ]β

with β = α
1+α ∈ [0, 1] and some B ≥ 0.
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Intermediate Rates

Abbreviate ∆f = `(X,Y , f )− `(X,Y , f ∗)

Generalized Central Condition
For all ε ≥ 0

E[e−ηε∆f ] ≤ eηεε

(B , β)-Bernstein Condition
For some B ≥ 0, β ∈ [0, 1]:

E[∆2
f ] ≤ B E[∆f ]β

Theorem

For bounded losses, generalized CC and (B, β)-Bernstein are equivalent
for ηε ∝ ε1−β/B.
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Online Learning: Prediction with Expert Advice
Prediction with Expert Advice

I Interpret the components of Xt ∈ [0, 1]d as predictions of d
experts, who are predicting Yt ∈ {0, 1}.

I Our choice Pf is a probability distribution on these d experts

I `(Xt ,Yt , f ) = |Yt − EPf (i)[Xt,i ]| = EPf (i)[|Yt − Xt,i |]

Suppose i.i.d. expert losses...

I Suppose |Yt − Xt,i | are i.i.d. with mean µi = EXt ,Yt [|Yt − Xt,i |].
I Let i∗ = arg mini µi .

Proposition ([Koolen, Grünwald, and van Erven, 2016])

Then the (B, 1)-Bernstein condition is satisfied with

B = min
i 6=i∗

EYt ,Xt,i [(|Yt − Xt,i | − |Yt − Xt,i∗ |)2]

µi − µi∗

18 / 25
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Achieving Fast Rates in Prediction with Expert
Advice

Theorem ([Koolen, Grünwald, and van Erven, 2016])

If the (B, β)-Bernstein condition is satisfied for prediction with expert
advice, then the Squint algorithm [Koolen and van Erven, 2015]
achieves (pseudo)-regret

E[Regreti
∗

T ] = O
(
(B log d)

1
2−βT

1−β
2−β
)

Regreti
∗

T = O
(
(B log d − log δ)

1
2−βT

1−β
2−β
)

w.p. ≥ 1− δ

w.r.t. i∗ = arg mini µi .
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Bernstein Condition for General Online Learning
Linearizing Losses
In online learning it is common to perform linear approximations of the
loss:

˜̀(Xt ,Yt , f ) = `(Xt ,Yt , ft) + (f − ft)
ᵀ∇f `(Xt ,Yt , ft),

which overestimates the regret.

Hinge Loss

I Suppose (Xt ,Yt) are i.i.d., and let f ,Xt in the d-dimensional unit
ball

I Hinge loss: `(Xt ,Yt , f ) = max{Yt − f ᵀXt , 0}

Theorem ([Koolen, Grünwald, and van Erven, 2016])

Then the (B, 1)-Bernstein condition is satisfied for ˜̀ with

B =
2λmax(E[XXᵀ])

‖E[YX]‖
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Achieving Fast Rates in General Online Learning

Theorem ([Koolen, Grünwald, and van Erven, 2016])

If the (B, β)-Bernstein condition is satisfied for ˜̀ general online
learning, then the MetaGrad algorithm [Van Erven and Koolen, 2016]
achieves (pseudo)-regret

E[Regretf
∗

T ] = O
(
(Bd logT )

1
2−βT

1−β
2−β
)

E[Regretf
∗

T ] = O
(
(Bd logT − log δ)

1
2−βT

1−β
2−β
)

w.p. ≥ 1− δ

w.r.t. f ∗ = arg minf∈F E[`(X,Y , f )].
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Achieving Fast Rates in Statistical Learning
I Simplest example: prior π on countable model F = {f1, f2, . . .}.
I Penalized ERM f̂ minimizes

N∑
i=1

`(Xi ,Yi , f ) + λ log
1

π(f )

Proposition (Bernstein Condition Rate)

Under (B, β)-Bernstein condition, bounded loss, λ =
(

N
B log 1

π(f ∗)

) 1−β
2−β

achieves

R(f̂ )− R(f ∗) = O

(
B log 1

δπ(f ∗)

N

) 1
2−β

w.p. ≥ 1− δ.

I Simple approach: estimate λ using cross-validation

I Or sophisticated approaches:
I Slope heuristic (Birgé, Massart)
I Lepski’s method
I Safe Bayes (Grünwald)
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Summary

Conditions for fast rates all the same or closely related:

I Central Condition: density estimation

I Pseudo-probability convexity: convex set of pseudo-probabilities

I Stochastic mixability (stronger): bounded squared loss (convex
model)

I Bernstein Condition: classification

I Bernstein for Online Learning: gap in prediction with expert advice,
hinge loss

Achieving these fast rates:

I In statistical learning: use cross-validation to select regularization
parameter

I In online learning: Squint (experts), MetaGrad (general online
learning)
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Papers

I Van Erven, Grünwald, Mehta, Reid, Williamson. Fast Rates in
Statistical and Online Learning. Journal of Machine Learning
Research, 2015. (Special issue dedicated to the memory of Alexey
Chervonenkis.)

I Koolen, Grünwald, Van Erven. Combining adversarial guarantees
and stochastic fast rates in online learning. In Advances in
Neural Information Processing Systems 29 (NIPS), pages
4457–4465, 2016.
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