Welcome to the Zoo: Fast Rates in Statistical and Online Learning

Tim van Erven

Inria Lille, October 27, 2017

Statistical Learning

$$\begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \dots, \begin{pmatrix} Y_N \\ X_N \end{pmatrix} \qquad \text{independently distributed} \ \sim P$$

$$\downarrow \\ \hat{f} \in \mathcal{F} \qquad \text{(proper learning)}$$

$$\downarrow \\ \mathbf{Small \ risk} \qquad R(\hat{f}) = \underset{(X,Y) \sim P}{\mathbb{E}} [\ell(X,Y,\hat{f})]$$

$$\mathbf{Compared \ to \ minimizer} \ f^* = \arg\min R(f) \ \text{of \ risk \ in \ model} \ \mathcal{F}$$

Minimax Rate:

Rate for most difficult possible P

$$\min_{\hat{f}} \max_{P} \mathbb{E}[R(\hat{f})] - R(f^*)$$

Classification

Given $X \in \mathbb{R}^d$, predict binary label $Y \in \{0,1\}$

$$\ell(X, Y, f) = \begin{cases} 0 & \text{if } f(X) = Y, \\ 1 & \text{if } f(X) \neq Y \end{cases}$$

$$R(f) = P(f(X) \neq Y)$$

Minimax Rate:

For worst-case P, learning is slow:

$$\mathbb{E}[R(\hat{f})] - R(f^*) \; \times \; \sqrt{\frac{\mathsf{complexity}(\mathcal{F})}{N}}$$

But Faster Rates Are Common

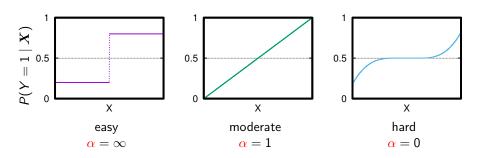
- ▶ Worst-case distribution: $P(Y = 1 \mid X)$ very close to $\frac{1}{2}$
- ▶ But then learning is (almost) useless!

The Margin Condition: [Tsybakov, 2004]

- ▶ Common case: $P(Y = 1 \mid X)$ not too close to $\frac{1}{2}$
- ▶ Assume $f^*(X) = f_B(X) = \arg\max_y P(Y = y \mid X)$
- ▶ Learning can be much faster depending on $\alpha \in [0, \infty]$:

$$\mathbb{E}[R(\hat{f})] - R(f^*) = O\left(\frac{\mathsf{complexity}(\mathcal{F})}{N}\right)^{\frac{1+\alpha}{2+\alpha}}$$

The Margin Condition



$$P_{\boldsymbol{X}}(|P(Y \mid \boldsymbol{X}) - \frac{1}{2}| \le t) \le ct^{\alpha}$$

Fast Rates in Misspecified Regression

Bounded regression: given $X \in \mathbb{R}^d$, predict $Y, f(X) \in \{-B, +B\}$

$$\ell(X,Y,f) = (Y-f(X))^2, \qquad f_{\mathsf{B}}(X) = \mathbb{E}[Y\mid X]$$

$$f_{\mathsf{B}}$$

$$f$$

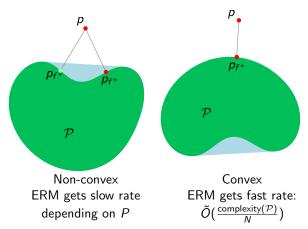
Conclusion: convex ${\mathcal F}$ always safe to get fast rates [Lee et al., 1998].

Fast Rates for Misspecified Density Estimation I

Estimate the best density from $\mathcal{P} = \{p_f \mid f \in \mathcal{F}\}$

$$\ell(Y,f) = -\log p_f(Y)$$

Assume all densities uniformly bounded: $1/c \le p_f(Y) \le c$



Fast Rates for Misspecified Density Estimation II

Fast rates follow from the following supermartingale-like property:

$$\mathbb{E}_{P}\left[\frac{p_f}{p_{f^*}}\right] \le 1 \quad \text{for all } p_f \in \mathcal{P}. \tag{1}$$

NB. If $p \in \mathcal{P}$, then $p_{f^*} = p$, so $\mathbb{E}_P \left[\frac{p_f}{p_{f^*}} \right] = 1$.

Lemma ([Li, 1999])

Convexity of P implies (1).

Proof.

- For arbitrary p_f , let $p_{\lambda} = (1 \lambda)p_{f^*} + \lambda p_f$ and $h(\lambda) = \mathbb{E}[-\log p_{\lambda}(Y)].$
- ► Convexity: h is minimized at $\lambda = 0$, so $0 \le h'(0) = \mathbb{E}\left[\frac{p_f}{p_{f^*}}\right] 1$.

Online Learning

For t = 1, ..., T:

- 1. Predict parameter vector $\hat{f}_t \in \mathcal{F} \subset \mathbb{R}^d$
- 2. Observe outcome $(m{X}_t, Y_t)$ and update $\hat{f}_t
 ightarrow \hat{f}_{t+1}$

Goal: achieve small regret

$$\mathsf{Regret}_T^{f^*} = \sum_{t=1}^T \ell(\boldsymbol{X}_t, Y_t, \hat{f}_t) - \sum_{t=1}^T \ell(\boldsymbol{X}_t, Y_t, f^*)$$

with respect to the 'best' parameters $f^* \in \mathcal{F}$.

Assume losses bounded and convex in f, and $\mathcal F$ convex with bounded diameter.

Online Learning

For t = 1, ..., T:

- 1. Predict parameter vector $\hat{f}_t \in \mathcal{F} \subset \mathbb{R}^d$
- 2. Observe outcome $(m{X}_t, Y_t)$ and update $\hat{f}_t
 ightarrow \hat{f}_{t+1}$

Goal: achieve small regret

$$\mathsf{Regret}_T^{f^*} = \sum_{t=1}^T \ell(\boldsymbol{X}_t, Y_t, \hat{f}_t) - \sum_{t=1}^T \ell(\boldsymbol{X}_t, Y_t, f^*)$$

with respect to the 'best' parameters $f^* \in \mathcal{F}$.

Assume losses bounded and convex in f, and $\mathcal F$ convex with bounded diameter.

Minimax Rate:

Rate for most difficult possible data:

$$\min_{\hat{f}_1} \max_{\boldsymbol{X}_1, Y_1} \min_{\hat{f}_2} \max_{\boldsymbol{X}_2, Y_2} \cdots \min_{\hat{f}_T} \max_{\boldsymbol{X}_T, Y_T} \max_{f^* \in \mathcal{F}} \mathsf{Regret}_T^{f^*} = O(\sqrt{T})$$

Fast Rates for Exp-concave and Mixable Losses

We can get a much faster $O(\frac{d}{\eta} \log T)$ rate in the following cases:

Exp-concavity:

$$f \mapsto e^{-\eta \ell(X_t, Y_t, f)}$$
 should be concave.

E.g. logistic loss: $log(1 + e^{-Y_t f^{\mathsf{T}} X_t})$

Fast Rates for Exp-concave and Mixable Losses

We can get a much faster $O(\frac{d}{\eta} \log T)$ rate in the following cases:

Exp-concavity:

$$f \mapsto e^{-\eta \ell(X_t, Y_t, f)}$$
 should be concave.

E.g. logistic loss: $log(1 + e^{-Y_t f^{\mathsf{T}} X_t})$

Mixability:

Without knowing X_t , Y_t , we can map any probability distribution π on \mathcal{F} to a prediction $f_{\pi} \in \mathcal{F}$ such that

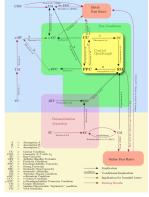
$$e^{-\eta\ell(\boldsymbol{X}_t,Y_t,f_\pi)} \geq \int e^{-\eta\ell(\boldsymbol{X}_t,Y_t,f)} \mathrm{d}\pi(f)$$

- Intuition: allows being unsure
- Exp-concavity is a special case: $f_{\pi} = \mathbb{E}_{\pi}[f]$.

Welcome to the Zoo

How can we understand all these different cases?

- ▶ We made a map...
- ...but the zoo is huge and the routes are long.



A full map of the zoo [Van Erven, Grünwald, Mehta, Reid, and Williamson, 2015]

Welcome to the Zoo

How can we understand all these different cases?

- ▶ We made a map...
- ... but the zoo is huge and the routes are long.
- ► The summary: for bounded losses, they are all special cases of (more or less) one central condition.
- Let me give you a tour.

A full map of the zoo [Van Erven, Grünwald, Mehta, Reid, and Williamson, 2015]

The Central Condition

Central Condition

For some $\eta > 0$,

$$\mathbb{E}_{P}\left[e^{-\eta\left(\ell(\boldsymbol{X},Y,f)-\ell(\boldsymbol{X},Y,f^{*})\right)}\right]\leq 1 \qquad \text{for all } f\in\mathcal{F}.$$

▶ Controls the left tail of $\ell(X, Y, f) - \ell(X, Y, f^*)$.

The Central Condition

Central Condition

For some $\eta > 0$,

$$\mathop{\mathbb{E}}_{P}\left[e^{-\eta\left(\ell(\boldsymbol{X},Y,f)-\ell(\boldsymbol{X},Y,f^{*})\right)}\right]\leq 1 \qquad \text{for all } f\in\mathcal{F}.$$

▶ Controls the left tail of $\ell(X, Y, f) - \ell(X, Y, f^*)$.

Specialize to Density Estimation

- $\ell(Y, f) = -\log p_f(Y) \leftrightarrow p_f(Y) = e^{-\ell(Y, f)}$
- ▶ For $\eta = 1$, CC specializes to $\mathbb{E}_P\left[\frac{p_f(Y)}{p_{f^*}(Y)}\right] \leq 1$.
- ► Convex \mathcal{P} : $\min_{\pi(f)} \mathbb{E}[-\log \int p_f(Y) d\pi(f)] = \min_f \mathbb{E}[-\log p_f(Y)].$

The Central Condition

Central Condition

For some $\eta > 0$,

$$\mathbb{E}_{P}\left[e^{-\eta\left(\ell(\boldsymbol{X},Y,f)-\ell(\boldsymbol{X},Y,f^*)\right)}\right]\leq 1 \qquad \text{for all } f\in\mathcal{F}.$$

▶ Controls the left tail of $\ell(X, Y, f) - \ell(X, Y, f^*)$.

Specialize to Density Estimation

- $\ell(Y, f) = -\log p_f(Y) \leftrightarrow p_f(Y) = e^{-\ell(Y, f)}$
- ▶ For $\eta = 1$, CC specializes to $\mathbb{E}_P\left[\frac{p_f(Y)}{p_{f^*}(Y)}\right] \leq 1$.
- ► Convex \mathcal{P} : $\min_{\pi(f)} \mathbb{E}[-\log \int p_f(Y) d\pi(f)] = \min_f \mathbb{E}[-\log p_f(Y)].$

Theorem

For general losses, CC is equivalent to pseudo-probability convexity:

$$\min_{\pi(f)} \mathbb{E}[-\log \int e^{-\eta \ell(\boldsymbol{X},Y,f)} \, \mathrm{d}\pi(f)] = \min_{f} \mathbb{E}[-\log e^{-\eta \ell(\boldsymbol{X},Y,f)}]$$

Understanding Online Learning Conditions

Mixability

Without knowing X_t, Y_t , we can map any probability distribution π on \mathcal{F} to a prediction $f_{\pi} \in \mathcal{F}$ such that

$$egin{aligned} e^{-\eta\ell(oldsymbol{X}_t,Y_t,f_\pi)} &\geq \int e^{-\eta\ell(oldsymbol{X}_t,Y_t,f)} \mathrm{d}\pi(f) \ \ell(oldsymbol{X}_t,Y_t,f_\pi) &\leq -rac{1}{\eta}\log\int e^{-\eta\ell(oldsymbol{X}_t,Y_t,f)} \mathrm{d}\pi(f) \end{aligned}$$

Stochastic Mixability

Without knowing P, we can map any probability distribution π on $\mathcal F$ to a prediction $f_\pi \in \mathcal F$ such that

$$\mathbb{E}_{P}[\ell(X, Y, f_{\pi})] \leq \mathbb{E}_{P}\left[-\frac{1}{\eta}\log \int e^{-\eta\ell(X, Y, f)}d\pi(f)\right]$$

Understanding Online Learning Conditions

Mixability

Without knowing X_t, Y_t , we can map any probability distribution π on \mathcal{F} to a prediction $f_{\pi} \in \mathcal{F}$ such that

$$e^{-\eta\ell(oldsymbol{X}_t,Y_t,f_\pi)} \ge \int e^{-\eta\ell(oldsymbol{X}_t,Y_t,f)} \mathrm{d}\pi(f)$$
 $\ell(oldsymbol{X}_t,Y_t,f_\pi) \le -rac{1}{\eta}\log\int e^{-\eta\ell(oldsymbol{X}_t,Y_t,f)} \mathrm{d}\pi(f)$

Stochastic Mixability

Without knowing P, we can map any probability distribution π on $\mathcal F$ to a prediction $f_\pi \in \mathcal F$ such that

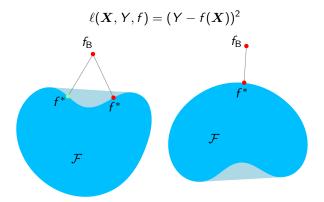
$$\mathbb{E}_{P}[\ell(\boldsymbol{X}, Y, f_{\pi})] \leq \mathbb{E}_{P}\left[-\frac{1}{\eta}\log \int e^{-\eta\ell(\boldsymbol{X}, Y, f)}d\pi(f)\right]$$

Theorem

Stochastic mixability implies the central condition, and under (somewhat restrictive) technical conditions the reverse also holds.

Understanding Regression

Bounded regression: given $X \in \mathbb{R}^d$, predict $Y, f(X) \in \{-B, +B\}$



Proposition

For convex \mathcal{F} , the squared loss is exp-concave with $\eta \propto 1/B^2$.

exp-concavity o mixability o stochastic mixability o central condition

Another Way to See the Central Condition

Abbreviate
$$\Delta_f = \ell(m{X}, m{Y}, f) - \ell(m{X}, m{Y}, f^*).$$
 Then $\mathbb{E}[\Delta_f] = R(f) - R(f^*)$

Central Condition

$$\mathbb{E}[e^{-\eta \Delta_f}] \leq 1$$

(B, 1)-Bernstein Condition

The closer R(f) to $R(f^*)$, the smaller the variance:

$$\mathbb{E}[\Delta_f^2] \leq B\,\mathbb{E}[\Delta_f]$$

Another Way to See the Central Condition

Abbreviate
$$\Delta_f = \ell(m{X}, m{Y}, f) - \ell(m{X}, m{Y}, f^*)$$
. Then $\mathbb{E}[\Delta_f] = R(f) - R(f^*)$

Central Condition

$$\mathbb{E}[e^{-\eta\Delta_f}] \leq 1$$

(B, 1)-Bernstein Condition

The closer R(f) to $R(f^*)$, the smaller the variance:

$$\mathbb{E}[\Delta_f^2] \leq B\,\mathbb{E}[\Delta_f]$$

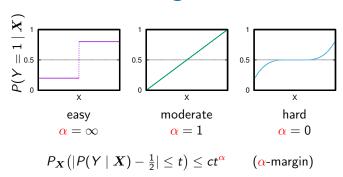
Proposition

For bounded losses, CC and (B,1)-Bernstein are equivalent for B $\propto 1/\eta$.

Proof.

By
$$e^{-z} pprox 1 - z + \frac{1}{2}z^2$$
 applied to $z = \eta \Delta_f$.

Understanding Classification



Lemma (Tsybakov)

If $f_B \in \mathcal{F}$. Then, for 0/1-loss, α -margin is equivalent to the (B, β) -Bernstein condition:

$$\mathbb{E}[\Delta_f^2] \leq B \, \mathbb{E}[\Delta_f]^{\beta}$$

with $\beta = \frac{\alpha}{1+\alpha} \in [0,1]$ and some $B \geq 0$.

Intermediate Rates

Abbreviate
$$\Delta_f = \ell(\boldsymbol{X}, Y, f) - \ell(\boldsymbol{X}, Y, f^*)$$

Generalized Central Condition

For all $\epsilon \geq 0$

$$\mathbb{E}[e^{-\eta_{\epsilon}\Delta_f}] \leq e^{\eta_{\epsilon}\epsilon}$$

(B, β) -Bernstein Condition

For some $B \ge 0, \beta \in [0, 1]$:

$$\mathbb{E}[\Delta_f^2] \leq B \, \mathbb{E}[\Delta_f]^{\beta}$$

$\mathsf{Theorem}$

For bounded losses, generalized CC and (B, β) -Bernstein are equivalent for $\eta_{\epsilon} \propto \epsilon^{1-\beta}/B$.

Online Learning: Prediction with Expert Advice

Prediction with Expert Advice

- ▶ Interpret the components of $X_t \in [0,1]^d$ as predictions of d experts, who are predicting $Y_t \in \{0,1\}$.
- \triangleright Our choice P_f is a probability distribution on these d experts
- $\ell(X_t, Y_t, f) = |Y_t \mathbb{E}_{P_f(i)}[X_{t,i}]| = \mathbb{E}_{P_f(i)}[|Y_t X_{t,i}|]$

Online Learning: Prediction with Expert Advice

Prediction with Expert Advice

- ▶ Interpret the components of $X_t \in [0,1]^d$ as predictions of d experts, who are predicting $Y_t \in \{0,1\}$.
- \triangleright Our choice P_f is a probability distribution on these d experts
- $\ell(X_t, Y_t, f) = |Y_t \mathbb{E}_{P_f(i)}[X_{t,i}]| = \mathbb{E}_{P_f(i)}[|Y_t X_{t,i}|]$

Suppose i.i.d. expert losses...

- ▶ Suppose $|Y_t X_{t,i}|$ are i.i.d. with mean $\mu_i = \mathbb{E}_{X_t, Y_t}[|Y_t X_{t,i}|]$.
- ▶ Let $i^* = \arg\min_i \mu_i$.

Proposition ([Koolen, Grünwald, and van Erven, 2016])

Then the (B,1)-Bernstein condition is satisfied with

$$B = \min_{i \neq i^*} \frac{\mathbb{E}_{Y_t, X_{t,i}}[(|Y_t - X_{t,i}| - |Y_t - X_{t,i^*}|)^2]}{\mu_i - \mu_{i^*}}$$

Achieving Fast Rates in Prediction with Expert Advice

Theorem ([Koolen, Grünwald, and van Erven, 2016])

If the (B, β) -Bernstein condition is satisfied for prediction with expert advice, then the Squint algorithm [Koolen and van Erven, 2015] achieves (pseudo)-regret

$$\begin{split} \mathbb{E}[\mathsf{Regret}_T^{i^*}] &= O\big((B\log d)^{\frac{1}{2-\beta}}\,T^{\frac{1-\beta}{2-\beta}}\big) \\ \mathsf{Regret}_T^{i^*} &= O\big((B\log d - \log\delta)^{\frac{1}{2-\beta}}\,T^{\frac{1-\beta}{2-\beta}}\big) \qquad \textit{w.p.} \ \geq 1-\delta \end{split}$$

w.r.t. $i^* = \arg\min_i \mu_i$.

Bernstein Condition for General Online Learning

Linearizing Losses

In online learning it is common to perform linear approximations of the loss:

$$\tilde{\ell}(\boldsymbol{X}_t, Y_t, f) = \ell(\boldsymbol{X}_t, Y_t, f_t) + (f - f_t)^{\mathsf{T}} \nabla_f \ell(\boldsymbol{X}_t, Y_t, f_t),$$

which overestimates the regret.

Bernstein Condition for General Online Learning

Linearizing Losses

In online learning it is common to perform linear approximations of the loss:

$$\tilde{\ell}(\boldsymbol{X}_t, Y_t, f) = \ell(\boldsymbol{X}_t, Y_t, f_t) + (f - f_t)^{\mathsf{T}} \nabla_f \ell(\boldsymbol{X}_t, Y_t, f_t),$$

which overestimates the regret.

Hinge Loss

- Suppose (X_t, Y_t) are i.i.d., and let f, X_t in the d-dimensional unit ball
- ▶ Hinge loss: $\ell(X_t, Y_t, f) = \max\{Y_t f^{\intercal}X_t, 0\}$

Theorem ([Koolen, Grünwald, and van Erven, 2016])

Then the (B,1)-Bernstein condition is satisfied for $\tilde{\ell}$ with

$$B = \frac{2\lambda_{max}(\mathbb{E}[XX^{\intercal}])}{\|\mathbb{E}[YX]\|}$$

Achieving Fast Rates in General Online Learning

Theorem ([Koolen, Grünwald, and van Erven, 2016])

If the (B,β) -Bernstein condition is satisfied for $\tilde{\ell}$ general online learning, then the MetaGrad algorithm [Van Erven and Koolen, 2016] achieves (pseudo)-regret

$$\begin{split} \mathbb{E}[\mathsf{Regret}_T^{f^*}] &= O\big((Bd\log T)^{\frac{1}{2-\beta}}\,T^{\frac{1-\beta}{2-\beta}}\big) \\ \mathbb{E}[\mathsf{Regret}_T^{f^*}] &= O\big((Bd\log T - \log\delta)^{\frac{1}{2-\beta}}\,T^{\frac{1-\beta}{2-\beta}}\big) \qquad \textit{w.p.} \, \geq 1-\delta \end{split}$$

w.r.t. $f^* = \operatorname{arg\,min}_{f \in \mathcal{F}} \mathbb{E}[\ell(X, Y, f)].$

Achieving Fast Rates in Statistical Learning

- ▶ Simplest example: **prior** π on **countable model** $\mathcal{F} = \{f_1, f_2, \ldots\}$.
- ▶ Penalized ERM \hat{f} minimizes

$$\sum_{i=1}^{N} \ell(\boldsymbol{X}_{i}, Y_{i}, f) + \frac{\lambda}{\lambda} \log \frac{1}{\pi(f)}$$

Achieving Fast Rates in Statistical Learning

- ▶ Simplest example: prior π on countable model $\mathcal{F} = \{f_1, f_2, \ldots\}$.
- **Penalized ERM** \hat{f} minimizes

$$\sum_{i=1}^{N} \ell(\boldsymbol{X}_{i}, Y_{i}, f) + \frac{\lambda}{\lambda} \log \frac{1}{\pi(f)}$$

Proposition (Bernstein Condition Rate)

Under (B, β) -Bernstein condition, bounded loss, $\lambda = \left(\frac{N}{B \log \frac{1}{\pi(f^*)}}\right)^{\frac{1-\beta}{2-\beta}}$ achieves

$$R(\hat{f}) - R(f^*) = O\left(\frac{\frac{B}{\delta\pi(f^*)}}{N}\right)^{\frac{1}{2-\beta}}$$
 $w.p. \ge 1 - \delta.$

Achieving Fast Rates in Statistical Learning

- ▶ Simplest example: prior π on countable model $\mathcal{F} = \{f_1, f_2, \ldots\}$.
- **Penalized ERM** \hat{f} minimizes

$$\sum_{i=1}^{N} \ell(\boldsymbol{X}_{i}, Y_{i}, f) + \frac{\lambda}{\lambda} \log \frac{1}{\pi(f)}$$

Proposition (Bernstein Condition Rate)

Under (B, β) -Bernstein condition, bounded loss, $\lambda = \left(\frac{N}{B \log \frac{1}{\pi(f^*)}}\right)^{\frac{1-\beta}{2-\beta}}$ achieves

$$R(\hat{f}) - R(f^*) = O\left(\frac{\frac{B}{\delta\pi(f^*)}}{N}\right)^{\frac{1}{2-\beta}}$$
 $w.p. \ge 1 - \delta.$

- **Simple approach**: estimate λ using cross-validation
- ► Or sophisticated approaches:
 - Slope heuristic (Birgé, Massart)
 - Lepski's method
 - Safe Bayes (Grünwald)

Summary

Conditions for fast rates all the same or closely related:

- Central Condition: density estimation
- Pseudo-probability convexity: convex set of pseudo-probabilities
- Stochastic mixability (stronger): bounded squared loss (convex model)
- Bernstein Condition: classification
- Bernstein for Online Learning: gap in prediction with expert advice, hinge loss

Summary

Conditions for fast rates all the same or closely related:

- Central Condition: density estimation
- Pseudo-probability convexity: convex set of pseudo-probabilities
- Stochastic mixability (stronger): bounded squared loss (convex model)
- Bernstein Condition: classification
- Bernstein for Online Learning: gap in prediction with expert advice, hinge loss

Achieving these fast rates:

- In statistical learning: use cross-validation to select regularization parameter
- ► In online learning: Squint (experts), MetaGrad (general online learning)

Papers

- Van Erven, Grünwald, Mehta, Reid, Williamson. Fast Rates in Statistical and Online Learning. Journal of Machine Learning Research, 2015. (Special issue dedicated to the memory of Alexey Chervonenkis.)
- ▶ Koolen, Grünwald, Van Erven. Combining adversarial guarantees and stochastic fast rates in online learning. In Advances in Neural Information Processing Systems 29 (NIPS), pages 4457–4465, 2016.

References

- W. M. Koolen and T. van Erven. Second-order quantile methods for experts and combinatorial games. In JMLR Workshop and Conference Proceedings, volume 40: Proceedings of the 28th Conference on Learning Theory (COLT), pages 1155–1175, 2015.
- W. M. Koolen, P. Grünwald, and T. van Erven. Combining adversarial guarantees and stochastic fast rates in online learning. In Advances in Neural Information Processing Systems 29 (NIPS), pages 4457–4465, 2016.
- W. Lee, P. Bartlett, and R. Williamson. The importance of convexity in learning with squared loss. IEEE Transactions on Information Theory, 44(5):1974–1980, 1998.
- J. Li. Estimation of Mixture Models. PhD thesis, Yale University, 1999.
- A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of Statistics, 32(1):135-166, 2004.
- T. van Erven and W. M. Koolen. Metagrad: Multiple learning rates in online learning. In Advances in Neural Information Processing Systems 29 (NIPS), pages 3666–3674, 2016.
- T. van Erven, P. D. Grünwald, N. A. Mehta, M. D. Reid, and R. C. Williamson. Fast rates in statistical and online learning. *Journal of Machine Learning Research*, 16:1793–1861, 2015.