
Chapter 1
Game-theoretically Optimal Reconciliation of
Contemporaneous Hierarchical Time Series
Forecasts

Tim van Erven and Jairo Cugliari

Abstract In hierarchical time series (HTS) forecasting, the hierarchical relation be-
tween multiple time series is exploited to make better forecasts. This hierarchical
relation implies one or more aggregate consistency constraints that the series are
known to satisfy. Many existing approaches, like for example bottom-up or top-
down forecasting, therefore attempt to achieve this goal in a way that guarantees
that the forecasts will also be aggregate consistent. We propose to split the problem
of HTS into two independent steps: first one comes up with the best possible fore-
casts for the time series without worrying about aggregate consistency; and then
a reconciliation procedure is used to make the forecasts aggregate consistent. We
introduce a Game-Theoretically OPtimal (GTOP) reconciliation method, which is
guaranteed to only improve any given set of forecasts. This opens up new possibil-
ities for constructing the forecasts. For example, it is not necessary to assume that
bottom-level forecasts are unbiased, and aggregate forecasts may be constructed by
regressing both on bottom-level forecasts and on other covariates that may only be
available at the aggregate level. We illustrate the benefits of our approach both on
simulated data and on real electricity consumption data.

1.1 Introduction

The general setting of hierarchical time series (HTS) forecasting has been ex-
tensively studied because of its applications to, among others, inventory manage-
ment for companies [Fliedner, 1999], euro-area macroeconomic studies [Lütkepohl,
2009], forecasting Australian domestic tourism [Hyndman et al., 2011], and balanc-
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ing the national budget of states [Stone et al., 1942, Byron, 1978]. As a consequence
of the recent deployment of smart grids and autodispatchable sources, HTS have
also been introduced in electricity demand forecasting [Borges et al., 2013], which
is essential for electricity companies to reduce electricity production cost and take
advantage of market opportunities.

A Motivating Example: Electricity Forecasting The electrical grid induces a hi-
erarchy in which customer demand is viewed at increasing levels of aggregation.
One may organize this hierarchy in different ways, but in any case the demand of
individual customers is at the bottom, and the top level represents the total demand
for the whole system. Depending on the modelling purpose, intermediate levels of
aggregation may represent groups of clients that are tied together by geographical
proximity, tariff contracts, similar consumption structure or other criteria.

Whereas demand data were previously available only for the whole system, they
are now also available at regional (intermediate) levels or even at the individual
level, which makes it possible to forecast electricity demand at different levels of
aggregation. To this end, it is not only necessary to extend existing prediction mod-
els to lower levels of the customer hierarchy, but also to deal with the new possi-
bilities and constraints that are introduced by the hierarchical organization of the
predictions. In particular, it may be required that the sum of lower-level forecasts
is equal to the prediction for the whole system. This was demanded, for example,
in the Global Energy Forecasting Competition 2012 [Hong et al., 2013], and it also
makes intuitive sense that the forecasts should sum in the same way as the real data.
Moreover, we show in Theorems 1 and 2 below that this requirement, if enforced
using a general method that we will introduce, can only improve the forecasts.

Hierarchical Time Series Electricity demand data that are organized in a customer
hierarchy, are a special case of what is known in the literature as contemporaneous
HTS: each node in the hierarchy corresponds to a time series, and, at any given time,
the value of a time series higher up is equal to the sum of its constituent time series.
In contrast, there also exist temporal HTS, in which time series are aggregated over
periods of time, but we will not consider those in this work. For both types of HTS,
the question of whether it is better to predict an aggregate time series directly or
to derive forecasts from predictions for its constituent series has received a lot of
attention, although the consensus appears to be that there is no clear-cut answer.
(See [Fliedner, 1999, Lütkepohl, 2009] for surveys.) A significant theoretical effort
has also been made to understand the probability structure of contemporaneous HTS
when the constituent series are auto-regressive moving average (ARMA) models
[Granger, 1988].

HTS Forecasting The most common methods used for hierarchical time series
forecasting are bottom-up, top-down and middle-out [Fliedner, 1999, Borges et al.,
2013]. The first of these concentrates on the prediction of all the components and
uses the sum of these predictions as a forecast of the whole. The second one predicts
the top level aggregate and then splits up the prediction into the components accord-
ing to proportions that may be estimated, for instance, from historical proportions
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in the time series. The middle out strategy is a combination of the first two: one
first obtains predictions at some level of the hierarchy; then one uses the bottom-up
strategy to forecast the upper levels and top-down to forecast the lower levels.

As observed by Hyndman et al. [2011], all three methods can be viewed as linear
mappings from a set of initial forecasts for the time series to reconciled estimates
that are aggregate consistent, which means that the sum of the forecasts of the com-
ponents of an hierarchical time series is equal to the forecast of the whole. A more
sophisticated linear mapping may be obtained by setting up a linear regression prob-
lem in which the initial forecasts are viewed as noisy observations of the expected
values of the time series [Byron, 1978] (see Section 1.2.3). In this approach, which
goes back to Stone, Champernowne, and Meade [1942], it is then inescapable to
assume that the initial forecasts are unbiased estimates, so that the noise has mean
zero. Assuming furthermore that the covariance matrix Σ of the noise can be accu-
rately estimated for each time step, the outcomes for the time series can be estimated
using a generalized least-squares (GLS) method, which solves the linear regression
problem with aggregate consistency constraints on the solution.

Although the assumption of unbiased initial forecasts rules out using any type of
regularized estimator (like, for instance, the LASSO [Tibshirani, 1996] which we
consider in Section 1.3.1), it might still be manageable in practice. The difficulty
with GLS, however, is estimating Σ , which might be possible on accounting data by
laboriously tracing back all the sources of variance in the estimates [Chen, 2006],
but does not seem feasible in our motivating example of electricity demand fore-
casting. (Standard estimators like those of White [1980] or MacKinnon and White
[1985] do not apply, because they estimate an average of Σ over time instead of its
value at the current time step.) Alternatively, it has therefore been proposed to make
an additional assumption about the covariances of the initial forecasts that allows
estimation of Σ to be sidestepped [Hyndman et al., 2011], but it is not clear when
we can expect this assumption to hold (see Section 1.2.3).

Our Contribution Considering the practical difficulties in applying GLS, and the
limited modelling power of bottom-up, top-down, middle-out methods, we try to
approach HTS forecasting in a slightly different way. All these previous approaches
have been restricted by combining the requirement of aggregate consistency with
the goal of sharing information between hierarchical levels. Instead, we propose
to separate these steps, which leads to an easier way of thinking about the problem.
As our main contribution, we will introduce a Game-Theoretically OPtimal (GTOP)
reconciliation method to map any given set of forecasts, which need not be aggregate
consistent, to new aggregate consistent forecasts that are guaranteed to be at least as
good. As the GTOP method requires no assumptions about the probability structure
of the time series or the nature of the given set of forecasts, it leaves a forecaster
completely free to use the prediction method of their choice at all levels of the
hierarchy without worrying about aggregate consistency or theoretical restrictions
like unbiasedness of their forecasts. As illustrated in Section 1.3.2, taking aggregate
consistency out of the equation allows one to go beyond simple bottom-up, top-
down or middle-out estimators, and consider estimators that use more complicated
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Fig. 1.1 A two-level hierarchical time series structure

regression structures, in the same spirit as those considered by Lütkepohl [2009,
Section 5.3].

Outline In the next section, we present the GTOP method and formally relate it
to the GLS approach. Then, in Section 1.3, we demonstrate how GTOP may be
applied with forecasts that do not satisfy the traditional unbiasedness assumption,
first on simulated data, and then on real electricity demand data. Finally, Section 1.4
provides an extensive discussion.

1.2 Game-theoretically Optimal Reconciliation

We will now introduce the GTOP method, which takes as input a set of forecasts,
which need not be aggregate consistent, and produces as output new aggregate con-
sistent forecasts that are guaranteed to be at least as good. In Section 1.2.1, we first
present the method for the simplest possible hierarchies, which are composed of
two levels only, and then, in Section 1.2.2, we explain how the procedure gener-
alizes in a straightforward way to arbitrary hierarchies. Proofs and computational
details are postponed until the end of Section 1.2.2. Finally, in Section 1.2.3, we
show how GTOP reconciliation may formally be interpreted as a special case of
GLS, although the quantities involved have different interpretations.

1.2.1 Two-level Hierarchies

For two-level hierarchies, we will refer to the lower levels as regions, in reference to
our motivating application of electricity demand forecasting, even though for other
applications the lower levels might correspond to something else. Suppose there are
K such regions, and we are not only interested in forecasting the values of a time
series (Yk[t])t=1,2,... for each individual region k = 1, . . . ,K, but also in forecasting
the sum of the regions (Ytot[t])t=1,2,..., where

Ytot[t] =
K

∑
k=1

Yk[t] for all t, (1.1)

as illustrated by Figure 1.1.
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Having observed the time series for times 1, . . . , t, together with possible inde-
pendent variables, we will be concerned with making predictions for their values at
time τ > t, but to avoid clutter, we will drop the time index [τ] from our notation
whenever it is sufficiently clear from context. Thus, for any region k, let Ŷk ≡ Ŷk[τ] be
the prediction for Yk ≡ Yk[τ], and let Ŷtot ≡ Ŷtot[τ] be the prediction for Ytot ≡ Ytot[τ].
Then we evaluate the quality of our prediction for region k by the squared loss

`k(Yk,Ŷk) = ak(Yk− Ŷk)
2,

where ak > 0 is a weighting factor that is determined by the operational costs asso-
ciated with prediction errors in region k. (We give some guidelines for the choice of
these weighting factors in Section 1.4.1.) Similarly, our loss in predicting the sum
of the regions is

`tot(Ytot,Ŷtot) = atot(Ytot− Ŷtot)
2,

with atot > 0. Let Y = (Y1, . . ., YK ,Ytot) and Ŷ = (Ŷ1, . . . ,ŶK ,Ŷtot). Then, all together,
our loss at time τ is

`(Y, Ŷ) =
K

∑
k=1

`k(Yk,Ŷk)+ `tot(Ytot,Ŷtot).

Aggregate Inconsistency In predicting the total Ytot, we might be able to take ad-
vantage of covariates that are only available at the aggregate level or there might be
noise that cancels out between regions, so that we have to anticipate that Ŷtot may be
a better prediction of Ytot than simply the sum of the regional predictions ∑

K
k=1 Ŷk,

and generally we may have Ŷtot 6= ∑
K
k=1 Ŷk.1 In light of (1.1), allowing such an ag-

gregate inconsistency between the regional predictions and the prediction for the
total would intuitively seem suboptimal. More importantly, for operational reasons
it is sometimes not even allowed. For example, in the Global Energy Forecasting
Competition 2012 [Hong et al., 2013], it was required that the sum of the regional
predictions Ŷ1, . . . ,ŶK were always equal to the prediction for the total Ŷtot. Or, if the
time series represent next year’s budgets for different departments, then the budget
for the whole organization must typically be equal to the sum of the budgets for the
departments.

We are therefore faced with a choice between two options. The first is that we
might try to adjust our prediction methods to avoid aggregate inconsistency. But
this would introduce complicated dependencies between our prediction methods
for the different regions and for the total, and as a consequence it might make our
predictions worse. So, alternatively, we might opt to remedy the problem in a post-
processing step: first we come up with the best possible predictions Ŷ without wor-
rying about any potential aggregate inconsistency, and then we map these predic-
tions to new predictions Ỹ = (Ỹ1, . . . ,ỸK ,Ỹtot), which are aggregate consistent:

1 It has also been suggested that the central limit theorem (CLT) implies that Ytot should be more
smooth than the individual regions Yk [Borges et al., 2013], and might therefore be easier to predict.
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Ỹtot =
K

∑
k=1

Ỹk.

This is the route we will take in this paper. In fact, it turns out that, for the right
mapping, the loss of Ỹ will always be smaller than the loss of Ŷ, no matter what the
actual data Y turn out to be, which provides a formal justification for the intuition
that aggregate inconsistent predictions should be avoided.

Mapping to Aggregate Consistent Predictions To map any given predictions Ŷ
to aggregate consistent predictions Ỹ, we will use a game-theoretic set-up that is
reminiscent of the game-theoretic approach to online learning [Cesa-Bianchi and
Lugosi, 2006]. In this formulation, we will choose our predictions Ỹ to achieve the
minimum in the following minimax optimization problem:

V = min
Ỹ∈A

max
Y∈A ∩B

{
`(Y, Ỹ)− `(Y, Ŷ)

}
. (1.2)

(The sets A and B will be defined below.) This may be interpreted as the Game-
Theoretically OPtimal (GTOP) move in a zero-sum game in which we first choose
Ỹ, then the data Y are chosen by an adversary, and finally the pay-off is measured by
the difference in loss between Ỹ and the given predictions Ŷ. The result is that we
will choose Ỹ to guarantee that `(Y, Ỹ)− `(Y, Ŷ) is at most V no matter what the
data Y are. Satisfyingly, we shall see below that V ≤ 0, so that the new predictions
Ỹ are always at least as good as the original predictions Ŷ.

We have left open the definitions of the sets A and B, which represent the do-
mains for our predictions and the data. The former of these will represent the set of
vectors that are aggregate consistent:

A =
{
(X1, . . . ,XK ,Xtot) ∈ RK+1 | Xtot =

K

∑
k=1

Xk

}
.

By definition, both our predictions Ỹ and the data Y must be aggregate consistent,
so they are restricted to lie in A . In addition, we introduce the set B, which allows
us to specify any other information we might have about the data. In the simplest
case, we may let B = RK+1 so that B imposes no constraints, but if, for example,
prediction intervals [Ŷk−Bk,Ŷk +Bk] are available for the given predictions, then we
may take advantage of that knowledge and define

B =
{
(X1, . . . ,XK ,Xtot) ∈ RK+1 | Xk ∈ [Ŷk−Bk,Ŷk +Bk] for k = 1, . . . ,K

}
. (1.3)

We could also add a prediction interval for Ŷtot as long as we take care that all our
prediction intervals together do not contradict aggregate consistency of the data. In
general, we will require that B ⊆RK+1 is a closed and convex set, and A ∩B must
be non-empty so that B does not contradict aggregate consistency.
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GTOP Predictions as a Projection Let ‖X‖ = (∑d
i=1 X2

i )
1/2 denote the L2-norm

of a vector X ∈ Rd for any dimension d. Then the total loss may succinctly be
written as

`(Y, Ŷ) = ‖AY−AŶ‖2, (1.4)

where A = diag(
√

a1, . . . ,
√

aK ,
√

atot) is a diagonal (K + 1)× (K + 1) matrix that
accounts for the weighting factors. In view of the loss, it is quite natural that the
GTOP predictions turn out to be equal to the L2-projection

Ỹproj = argmin
Ỹ∈A ∩B

‖AŶ−AỸ‖2 (1.5)

of Ŷ unto A ∩B after scaling all dimensions according to A.

Theorem 1 (GTOP: Two-level Hierarchies). Suppose that B is a closed, convex
set and that A ∩B is not empty. Then the projection Ỹproj uniquely exists, the value
of (1.2) is

V =−‖AỸproj−AŶ‖2 ≤ 0,

and the GTOP predictions are Ỹ = Ỹproj.

Thus, in a metric that depends on the loss, GTOP makes the minimal possible ad-
justment of the given predictions Ŷ to make them consistent with what we know
about the data. Moreover, the fact that V ≤ 0 implies that the GTOP predictions are
at least as good as the given predictions:

`(Y, Ỹproj)≤ `(Y, Ŷ) for any data Y ∈A ∩B.

Theorem 1 will be proved as a special case of Theorem 2 in the next section.

Example 1. If B = RK+1 does not impose any constraints, then the GTOP predic-
tions are

Ỹproj,k = Ŷk +

1
ak

∑
K
i=1

1
ai
+ 1

atot

∆ for k = 1, . . . ,K,

Ỹproj,tot = Ŷtot−
1

atot

∑
K
i=1

1
ai
+ 1

atot

∆ ,

where ∆ = Ŷtot−∑
K
k=1 Ŷk measures by how much Ŷ violates aggregate consistency.

In particular, if the given predictions Ŷ are already aggregate consistent, i.e. Ŷtot =

∑
K
k=1 Ŷk, then the GTOP predictions are the same as the given predictions: Ỹproj = Ŷ.

Example 2. If B consists of the prediction intervals specified in (1.3), then the ex-
treme values B1 = . . .= BK = 0 make the GTOP predictions exactly equal to those
of the bottom-up forecaster.

Example 3. If B defines prediction intervals as in (1.3) and a1 = · · · = aK = a and
B1 = · · ·= BK = B, then the GTOP predictions are
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Fig. 1.2 Example of a multi-level hierarchical time series structure

Ỹproj,k = Ŷk +
[ 1

a
K
a + 1

atot

∆

]
B

for k = 1, . . . ,K,

Ỹproj,tot =
K

∑
k=1

Ỹproj,k,

where [x]B = max
{
−B,min{B,x}

}
denotes clipping x to the interval [−B,B] and

∆ = Ŷtot−∑
K
k=1 Ŷk.

In general the GTOP predictions Ỹproj do not have a closed-form solution, but, as
long as B can be described by a finite set of inequality constraints, they can be
computed using quadratic programming. The details will be discussed at the end
of the next section, which generalizes the two-level hierarchies introduced so far to
arbitrary summation constraints.

1.2.2 General Summation Constraints

One might view (1.1) as forecasting K + 1 time series, which are ordered in a hi-
erarchy with two levels, in which the time series (Y1[t]), . . ., (YK [t]) for the regions
are at the bottom, and their total (Ytot[t]) is at the top (see Figure 1.1). More gen-
erally, one might imagine having a multi-level hierarchy of any finite number of
time series (Y1[t]), . . . ,(YM[t]), which are organised in a tree T that represents the
hierarchy of aggregation consistency requirements. For example, in Figure 1.2 the
time series (Y1[t]) might be the expenditure of an entire organisation, the time series
(Y2[t]),(Y3[t]), and (Y4[t]) might be the expenditures in different subdivisions within
the organization, time series (Y5[t]),(Y6[t]) and (Y7[t]) might represent the expen-
ditures in departments within subdivision (Y2[t]), and similarly (Y8[t]) and (Y9[t])
would be the expenditures in departments within (Y3[t]).

The discussion from the previous section directly extends to multi-level hierar-
chies as follows. For each time series m = 1, . . . ,M, let c(m) ⊂ {1, . . . ,M} denote
the set of its children in T . Then aggregate consistency generalizes to the constraint

A =
{
(X1, . . . ,XM) ∈ RM | Xm = ∑

i∈c(m)

Xi for all m such that c(m) is non-empty
}
.
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Remark 1. We note that all the constraints Xm = ∑i∈c(m) Xi in A are linear equal-
ity constraints. In fact, in all the subsequent developments, including Theorem 2,
we can allow A to be any set of linear equality constraints, as long as they are in-
ternally consistent, so that A is not empty. In particular, we could even allow two
(or more) predictions for the same time series by regarding the first prediction as
a prediction for a time series (Ym[t]) and the second as a prediction for a separate
time series (Ym′ [t]) with the constraint that Ym[t] = Ym′ [t]. To keep the exposition
focussed, however, we will not explore these possibilities in this paper.

Having defined the structure of the hierarchical time series through A , any addi-
tional information we may have about the data can again be represented by choosing
a convex, closed set B ⊆RM which is such that A ∩B is non-empty. In particular,
B = RM represents having no further information, and prediction intervals can be
represented analogously to (1.3) if they are available.

As in the two-level hierarchy, let Ŷ = (Ŷ1, . . . ,ŶM) be the original (potentially ag-
gregate inconsistent) predictions for the time series Y = (Y1, . . . ,YM) at a given time
τ . We assign weighting factors am > 0 to each of the time series m = 1, . . . ,M, and
we redefine the diagonal matrix A = diag(

√
a1, . . . ,

√
aM), so that we may write the

total loss as in (1.4). Then the GTOP predictions Ỹ = (Ỹ1, . . . ,ỸM) are still defined
as those achieving the minimum in (1.2), and the L2-projection Ỹproj is as defined
in (1.5).

Theorem 2 (GTOP: Multi-level Hierarchies). The exact statement of Theorem 1
still holds for the more general definitions for multi-level hierarchies in this section.

The proof of Theorems 1 and 2 fundamentally rests on the Pythagorean inequal-
ity, which is illustrated by Figure 1.3. In fact, this inequality is not restricted to the
squared loss we use in this paper, but holds for any loss that is based on a Bregman
divergence [Cesa-Bianchi and Lugosi, 2006, Section 11.2], so the proof would go
through in exactly the same way for such other losses. For example, the Kullback-
Leibler divergence, which measures the difference between two probability distri-
butions, is also a Bregman divergence.

Ŷ

Ỹproj
Y

A ∩B

Q
R

P

γ

Fig. 1.3 Illustration of the Pythagorean inequality P2 +Q2 ≤ R2, where P = ‖AY−AỸproj‖, Q =

‖AỸproj−AŶ‖ and R = ‖AY−AŶ‖. Convexity of A ∩B ensures that γ ≥ 90◦.
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Lemma 1 (Pythagorean Inequality). Suppose that B is a closed, convex set and
that A ∩B is non-empty. Then the projection Ỹproj exists and is unique, and

‖AY−AỸproj‖2 +‖AỸproj−AŶ‖2 ≤ ‖AY−AŶ‖2 for all Y ∈A ∩B.

Proof. The lemma is an instance of the generalized Pythagorean inequality [Cesa-
Bianchi and Lugosi, 2006, Section 11.2] for the Bregman divergence corresponding
to the Legendre function F(X) = ‖AX‖2, which is strictly convex (as required) be-
cause all entries of the matrix A are strictly positive. (The set A is a hyperplane,
so it is closed and convex by construction. The assumptions of the lemma therefore
ensure that A ∩B is closed, convex and non-empty.) ut

Proof (Theorem 2). Let f (Y, Ỹ)= `(Y, Ỹ)−`(Y, Ŷ). We will show that (Ỹproj, Ỹproj)

is a saddle-point for f , which implies that playing Ỹproj is the optimal strategy for
both players in the zero-sum game and that

V = min
Ỹ∈A

max
Y∈A ∩B

f (Y, Ỹ)= max
Y∈A ∩B

min
Ỹ∈A

f (Y, Ỹ)= f (Ỹproj, Ỹproj)=−‖AỸproj−AŶ‖2

[Rockafellar, 1970, Lemma 36.2], which is to be shown.
To prove that (Ỹproj, Ỹproj) is a saddle-point, we need to show that neither player

can improve their pay-off by changing their move. To this end, we first observe that,
by the Pythagorean inequality (Lemma 1),

f (Y, Ỹproj)= ‖AY−AỸproj‖2−‖AY−AŶ‖2≤−‖AỸproj−AŶ‖2 = f (Ỹproj, Ỹproj)

for all Y ∈B∩A . It follows that the maximum is achieved by Y = Ỹproj. Next, we
also have

argmin
Ỹ∈A

f (Ỹproj, Ỹ) = argmin
Ỹ∈A

‖AỸproj−AỸ‖2 = Ỹproj,

which completes the proof. ut

Efficient Computation For special cases, like the examples in the previous section,
the GTOP projection Ỹproj sometimes has a closed form. In general, no closed-form
solution may be available, but Ỹproj can still be computed by finding the solution to
the quadratic program

min
Ỹ

‖AŶ−AỸ‖2

subject to Ỹ ∈A ∩B.

Since A imposes only equality constraints, this quadratic program can be solved
efficiently as long as the further constraints imposed by B are manageable. In par-
ticular, if B imposes only linear inequality constraints, like, for example, in (1.3),
then the solution can be found efficiently using interior point methods [Lobo et al.,
1998] or using any of the alternatives suggested by Hazan et al. [2007, Section 4].
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The experiments in Section 1.3 were all implemented using the quadprog package
for the R programming language, which turned out to be fast enough.

1.2.3 Formal Relation to Generalized Least-squares

As discussed in the introduction, HTS has been modelled as a problem of linear
regression in the economics literature [Byron, 1978]. It is interesting to compare
this approach to GTOP, because the two turn out to be very similar, except that the
quantities involved have different interpretations. The linear regression approach
models the predictions as functions of the means of the real data

Ŷ[τ] = E
{

Y[τ]
}
+ ε[τ]

that are perturbed by a noise vector ε[τ] = (ε1[τ], . . . ,εM[τ]), where all distributions
and expectations are conditional on all previously observed values of the time series.
Then it is assumed that the predictions are unbiased estimates, so that the noise
variables all have mean zero, and the true means E{Y[τ]} can be estimated using
the generalized least-squares (GLS) estimate

min
Ỹ

(Ŷ− Ỹ)>Σ
−1(Ŷ− Ỹ)

subject to Ỹ ∈A ,
(1.6)

where Σ ≡ Σ [τ] is the M×M covariance matrix for the noise ε[τ] [Byron, 1978].
This reveals an interesting superficial relation between the GTOP forecasts and the
GLS estimates: if

Σ
−1 = A>A and B = RM, (1.7)

then the two coincide! However, the interpretation of A and Σ−1 is completely dif-
ferent, and the two procedures serve different purposes: whereas GLS tries to ad-
dress both reconciliation and the goal of sharing information between hierarchical
levels at the same time, the GTOP method is only intended to do reconciliation and
requires a separate procedure to share information. The case where the two meth-
ods coincide is therefore only a formal coincidence, and one should not assume that
the choice Σ−1 = A>A will adequately take care of sharing information between
hierarchical levels!

Ordinary Least-squares Given the difficulty of estimating Σ , Hyndman et al.
[2011] propose an assumption that allows them to sidestep estimation of Σ alto-
gether: they show that, under their assumption, the GLS estimate reduces to the
Ordinary Least-squares (OLS) estimate obtained from (1.6) by the choice

Σ = I,
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where I is the identity matrix. Via (1.7) it then follows that the OLS and GTOP
forecasts formally coincide when we take all the weighting factors in the definition
of the loss to be equal: a1 = . . .= aM , and let B =RM . Consequently, for two-level
hierarchies, OLS can be computed as in Example 1.

The assumption proposed by Hyndman et al. [2011] is that, at time τ , the covari-
ance Cov(Ŷm,Ŷm′) of the predictions for any two time series decomposes as

Cov(Ŷm,Ŷm′) = ∑
i∈S(m)
j∈S(m′)

Cov(Ŷi,Ŷj) for all m,m′, (1.8)

where S(m)⊆{1, . . . ,M} denotes the set of bottom-level time series out of which Ym
is composed. That is, Ym = ∑i∈S(m)Yi with Yi childless (i.e. c(i) = /0) for all i ∈ S(m).

Although the OLS approach appears to work well in practice (see Section 1.3.2),
it is not obvious when we can expect (1.8) to hold. Hyndman et al. [2011] motivate
it by pointing out that (1.8) would hold exactly if the forecasts would be exactly
aggregate consistent (i.e. Ŷ ∈A ). Since it is reasonable to assume that the forecasts
will be approximately aggregate consistent, it then also seems plausible that (1.8)
will hold approximately. However, this motivation seems insufficient, because rea-
soning as if the forecasts are aggregate consistent leads to conclusions that are too
strong: if Ŷ∈A , then any instance of GLS would give the same answer, so it would
not matter which Σ we used, and in the experiments in Section 1.3 we see that this
clearly does matter.

We therefore prefer to view OLS rather as a special case of GTOP, which will
work well when all the weighting factors in the loss are equal and the constraints in
B are vacuous.

1.3 Experiments

As discussed above, the GTOP method only solves the reconciliation part of HTS
forecasting; it does not prescribe how to construct the original predictions Ŷ. We will
now illustrate how GTOP might be used in practice, taking advantage of the fact that
it does not require the original predictions Ŷ to be unbiased. First, in Section 1.3.1,
we present a toy example with simulated data, which nevertheless illustrates many
of the difficulties one might encounter on real data. Then, in Section 1.3.2, we apply
GTOP to real electricity demand data, which motivated its development.

1.3.1 Simulation Study

We use GTOP with prediction intervals as in (1.3). We will compare to bottom-
up forecasting, and also to the OLS method described in Section 1.2.3, because it
appears to work well in practice (see Section 1.3.2) and it is one of the few methods
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available that does not require estimating any parameters. We do not compare to
top-down forecasting, because estimating proportions in top-down forecasting is
troublesome in the presence of independent variables (see Section 1.4.2).

Data We consider a two-level hierarchy with two regions, and simulate data ac-
cording to

Y1[t] = β1,0 +β1,1X [t]+ ε1[t] Y2[t] = β2,0 +β2,1X [t]+ ε2[t]

where (X [t]) is an independent variable, β1 = (β1,0,β1,1) and β2 = (β2,0,β2,1) are
coefficients to be estimated, and (ε1[t]) and (ε2[t]) are noise variables. We will take
β1 = β2 = (1,5), and let

ε1[t] = τϑ1[t]+συ [t] ε2[t] = τϑ2[t]−συ [t] for all t,

where ϑ1[t],ϑ2[t] and υ [t] are uniformly distributed on [−1,1], independently over t
and independently of each other, and τ and σ are scale parameters, for which we will
consider different values. Notice that the noise that depends on υ [t] cancels from the
total Ytot[t] =Y1[t]+Y2[t], which makes the total easier to predict than the individual
regions. We sample a train set of size 100 for the fixed design (X [t])t=1,...,100 =
(1/100,2/100, . . . ,1) and a test set of the same size for (X [t])t=101,...,200 = (1+
1/100, . . . ,2).

Fitting Models on the Train Set Based on the train set, we find estimates β̂1 and
β̂2 of the coefficients β1 and β2 by applying the LASSO [Tibshirani, 1996] sepa-
rately for each of the two regions, using cross-validation to calibrate the amount of
penalization. Then we predict Y1[τ] and Y2[τ] by

Ŷ1[τ] = β̂1,0 + β̂1,1X [τ] Ŷ2[τ] = β̂2,0 + β̂2,1X [τ].

Remark 2. In general, it is not guaranteed that forecasting the total Ytot[τ] directly
will give better predictions than the bottom-up forecast [Lütkepohl, 2009]. Con-
sequently, if the bottom-up forecast is the best we can come up with, then that is
how we should define our prediction for the total, and no further reconciliation is
necessary!

If we would use the LASSO directly to predict the total Ytot[τ], then, in light of
Remark 2, it might not do better than simply using the bottom-up forecast Ŷ1[τ]+
Ŷ2[τ]. We can be sure to do better than the bottom-up forecaster, however, by adding
our regional forecasts Ŷ1[τ] and Ŷ2[τ] as covariates, such that we fit Ytot[τ] by

βtot,0 +βtot,1X [τ]+βtot,2Ŷ1[τ]+βtot,3Ŷ2[τ], (1.9)

where βtot = (βtot,0,βtot,1,βtot,2,βtot,3) are coefficients to be estimated. For βtot =
(0,0,1,1) this would exactly give the bottom-up forecast, but now we can also ob-
tain different estimates if the data tell us to use different coefficients. However, to be
conservative and take advantage of the prior knowledge that the bottom-up forecast
is often quite good, we introduce prior knowledge into the LASSO by regularizing
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by
|βtot,0|+ |βtot,1|+ |βtot,2−1|+ |βtot,3−1| (1.10)

instead of its standard regularization by |βtot,0|+ |βtot,1|+ |βtot,2|+ |βtot,3|, which
gives it a preference for coefficients that are close to those of the bottom-up forecast.
Thus, from the train set, we obtain estimates β̂tot = (β̂tot,0, β̂tot,1, β̂tot,2, β̂tot,3) for βtot,
and we predict Ytot[τ] by

Ŷtot[τ] = β̂tot,0 + β̂tot,1X [τ]+ β̂tot,2Ŷ1[τ]+ β̂tot,3Ŷ2[τ].

Remark 3. The regularization in (1.10) can be implemented using standard LASSO
software by reparametrizing in terms of β ′tot = (βtot,0,βtot,1,βtot,2−1,βtot3 −1) and
subtracting Ŷ1[t] and Ŷ2[t] from the observation of Ytot[t] before fitting the model.
This gives estimates β̂ ′tot = (β̂ ′tot,0, β̂

′
tot,1, β̂

′
tot,2, β̂

′
tot,3) for β ′tot, which we turn back

into estimates β̂tot = (β̂ ′tot,0, β̂
′
tot,1, β̂

′
tot,2 +1, β̂ ′tot,3 +1) for βtot.

Reconciliation The procedure outlined above gives us a set of forecasts Ŷ =
(Ŷ1,Ŷ2,Ŷtot) for any time τ , but these forecasts need not be aggregate consistent.
It therefore remains to reconcile them. We will compare GTOP reconciliation to the
bottom-up forecaster and to the OLS method. To apply GTOP, we have to choose
the set B, which specifies any prior knowledge we may have about the data. The
easiest would be to specify no prior knowledge (by taking B = R3), but instead we
will opt to define prediction intervals for the two regional predictions as in (1.3).
We will use the same prediction bounds B1 and B2 for the entire test set, which are
estimated (somewhat simplistically) by the 95% quantile of the absolute value of
the residuals in the corresponding region in the train set.

Results on the Test Set We evaluate the three reconciliation procedures bottom-
up, OLS and GTOP by summing up their losses (1.4) on the test set, giving the totals
LBU, LOLS and LGTOP, which we compare to the sum of the losses L̂ for the unrecon-
ciled forecasts by computing the percentage of improvement (L̂−L)/L̂×100% for
L ∈ {LBU,LOLS,LGTOP}. It remains to define the weighting factors a1, a2 and atot in
the loss, and the scales σ and τ for the noise variables. We consider five different
sets of weighting factors, where the first three treat the two regions symmetrically
(by assigning them both weight 1), which seems the most realistic, and the other two
respectively introduce a slight and a very large asymmetry between regions, which
is perhaps less realistic, but was necessary to find a case where OLS would beat
GTOP. Finally, we always let σ +τ = 2, so that the scale of the noise is (somewhat)
comparable between experiments. Table 1.1 shows the median over 100 repetitions
of the experiment of the percentages of improvement.

First, we remark that, in all but one of the cases, GTOP reconciliation performs at
least as good as or better than OLS and bottom-up, and GTOP is the only of the three
methods that always improves on the unreconciled forecasts, as was already guaran-
teed by Theorems 1 and 2. Moreover, the only instance where OLS performs better
than GTOP (a1 = 1,a2 = atot = 20), appears to be the least realistic, because the
regions are treated very asymmetrically. For all cases where the weights are equal
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Table 1.1 Percentage of improvement over unreconciled forecasts for simulated data

σ τ a1 a2 atot bottom-up OLS GTOP

0 2 1 1 1 -13.97% 0.40% 0.40%
0 2 1 1 2 -19.47% -2.35% 0.47%
0 2 1 1 10 -26.62% -7.46% 0.12%
0 2 2 1 5 -22.49% -4.55% 0.23%
0 2 1 20 20 -26.96% -2.69% 0.13%
1 1 1 1 1 -55.51% 5.75% 5.75%
1 1 1 1 2 -75.09% -6.02% 4.54%
1 1 1 1 10 -141.66% -30.39% 2.41%
1 1 2 1 5 -92.47% -14.09% 3.13%
1 1 1 20 20 -77.18% -2.51% 1.22%
2 0 1 1 1 -94.92% 29.85% 29.85%
2 0 1 1 2 -184.23% 17.57% 34.76%
2 0 1 1 10 -996.22% -79.58% 44.75%
2 0 2 1 5 -319.30% 1.32% 35.48%
2 0 1 20 20 -183.95% 23.54% 16.19%

(a1 = a2 = atot = 1), we see that GTOP and OLS perform exactly the same, which,
in light of the equivalence discussed in Section 1.2.3, suggest that the prediction
intervals that make up B do not have a large effect in this case.

Secondly, we note that the unreconciled predictions are much better than the
bottom-up forecasts. Because bottom-up and the unreconciled forecasts make the
same predictions Ŷ1 and Ŷ2 for the two regions, this means that the difference must
be in the prediction Ŷtot for the sum of the regions, and so, indeed, the method
described in (1.9) and (1.10) makes significantly better forecasts than the simple
bottom-up forecast Ŷ1 + Ŷ2. We also see an overall trend that the scale of the per-
centages becomes larger as σ increases (or τ decreases), which may be explained by
the fact that forecasting Ytot becomes relatively easier, so that the difference between
Ŷtot and Ŷ1 + Ŷ2 gets bigger, and the effect of reconciliation gets larger.

1.3.2 EDF Data

To illustrate how GTOP reconciliation works on real data, we use electricity de-
mand data provided by Électricité de France (EDF). The data are historical demand
records ranging from 1 July 2004 to 31 December 2009, and are sampled each 30
minutes. The total demand is split up into K = 17 series, each representing a differ-
ent electricity tariff. The series are divided into a calibration set (from 1 July 2004
to 31 December 2008) needed by the prediction models, and a validation set (from
1 January 2009 to the end) on which we will measure the performance of GTOP.

Every night at midnight, forecasts are required for the whole next day, i.e. for
the next 48 time points. We use a non-parametric function-valued forecasting model
by Antoniadis et al. [2012], which treats every day as a 48-dimensional vector. The
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model uses all past data on the calibration and validation sets. For every past day d,
it considers day d+1 as a candidate prediction and then it outputs a weighted com-
bination of these candidates in which the weight of day d depends on its similarity
to the current day. This forecasting model is used independently on each of the 17
individual series and also on the aggregate series (their total).

We now use bottom-up, OLS and GTOP to reconcile the individual forecasts.
Similarly to the simulations in the previous section, the prediction intervals B1, . . . ,BK
for GTOP are computed as quantiles of the absolute values of the residuals, except
that now we only use the past two weeks of data from the validation set, and we
use the q-th quantile, where q is a parameter. We note that, for the special case
q = 0%, we would expect Bk to be close to 0, which makes GTOP very similar to
the bottom-up forecaster. (See Example 2.)

For each of the three methods, the percentages of improvement on the validation
set are computed in the same way as in the simulations in the previous section.
Table 1.2 shows their values for different choices of realistic weighting factors, using
q = 10% for GTOP, which was found by optimizing for the weights atot = 17 and
ak = 1 (k = 1, . . . ,17), as will be discussed below.

Table 1.2 Percentage of improvement over unreconciled forecasts for EDF data, using q = 10%
for GTOP

a1 a2 atot bottom-up OLS GTOP

1 1 1 0.98% 0.19% 1.62%
1 1 2 1.27% 0.27% 1.96%
1 1 10 1.65% 0.38% 2.41%
1 1 17 1.70% 0.40% 2.47%

We see that GTOP consistently outperforms both the bottom-up and the OLS
predictor, with gains that increase with atot. Unlike in the simulations, however, the
bottom-up forecaster is comparable to or even better than the unreconciled forecasts
in terms of its percentage of improvement. In light of Remark 2, we have therefore
considered simply replacing our prediction for the total by the bottom-up predictor,
which would make reconciliation unnecessary. However, when, instead of looking
at the percentage of improvement, we count the times when the unreconciled fore-
caster gives a better prediction for the total than the bottom-up forecaster, we see that
this is 56% percent, so the unreconciled forecaster does predict better than bottom-
up slightly more than half of the time, and consequently there is something to gain
by using it. As will be discussed next, this does make it necessary to use a small
quantile q with GTOP.

Choosing the Quantile To determine which quantile q to choose for GTOP, we
plot its percentage of improvement as a function of q for the case atot = 17 and
ak = 1 (see Figure 1.4). We see that all values below 60% improve on the bottom-up
forecaster, and that any value below 30% improves on OLS. The quantile q≈ 10%
gives the best results, and, for ease of comparison, we use this same value in all
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the experiments reported in Table 1.2. In light of the interpretation of the prediction
intervals, it might appear surprising that the optimal value for q would be so small.
This can be explained by the fact that the unreconciled forecasts are only better than
bottom-up 56% of the time, so that a small value of q is beneficial, because it keeps
the GTOP forecasts close to the bottom-up ones.
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Fig. 1.4 Percentages of improvement as a function of q for GTOP, OLS and bottom-up, using
atot = 17 and ak = 1 (k = 1, . . . ,17)

1.4 Discussion

We now turn to several subjects that we have not been able to treat in full detail
in the previous parts of the paper. First, in Section 1.4.1, we discuss appropriate
choices for the weighting factors that determine the loss. Then, in Section 1.4.2, we
discuss how estimating proportions in top-down forecasting is complicated by the
presence of independent variables, and, finally, in Section 1.4.3, we conclude with
a summary of the paper and directions for future work.

1.4.1 How to Choose the Weighting Factors in the Loss

In the General Forecasting Competition 2012 [Hong et al., 2013], a two-level hier-
archy was considered with weights chosen as ak = 1 for k = 1, . . . ,K and atot = K,
so that the forecast for the total receives the same weight as all the regional fore-
casts taken together. At first sight this appears to make sense, because predicting
the total is more important than predicting any single region. However, one should
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also take into account the fact that the errors in the predictions for the total are on a
much larger scale than the errors in the predictions for the regions, so that the total
is already a dominant factor in the loss without assigning it a larger weight.

To make this argument more precise, let us consider a simplified setting in which
we can compute expected losses. To this end, define random variables εk = Yk− Ŷk
for the regional prediction errors at time τ and assume that, conditionally on all
prior observations, 1) ε1, . . . ,εK are uncorrelated; and 2) the regional predictions are
unbiased, so that E{εk} = 0. Then the expected losses for the regions and the total
are

E`k(Yk,Ŷk) = ak E
{
(Yk− Ŷk)

2}= ak Var(εk) (k = 1, . . . ,K)

E`tot(Ytot,Ŷtot) = atotE
{
(∑

k
Yk−∑

k
Ŷk)

2}= atot Var
( K

∑
k=1

εk

)
= atot

K

∑
k=1

Var(εk),

where Var(Z) denotes the variance of a random variable Z.
We see that, even without assigning a larger weight to the total, E`tot(Ytot,Ŷtot) is

already of the same order as the sum of all E`k(Yk,Ŷk) together, which suggests that
choosing atot to be 1 or 2 (instead of K) might already be enough to assign sufficient
importance to the prediction of the total.

1.4.2 The Limits of Top-Down Forecasting

As a thought experiment, think of a noiseless situation in which

Y1[t] = X [t], Y2[t] = X [t]+1, Ytot[t] = Y1[t]+Y2[t] = 2X [t]+1

for some independent variable (X [t]). Suppose we use the following top-down ap-
proach: first we estimate Ytot[τ] by Ŷtot[τ] and then we make regional forecasts as
Ŷ1[τ] = λŶtot[τ] and Ŷ2[τ] = (1− λ )Ŷtot[τ] according to a constant λ that we will
estimate. Because we are in a noise-free situation, let us assume that estimation is
easy, and that we can predict Ytot[τ] exactly: Ŷtot[τ] = Ytot[τ]. Moreover, we will as-
sume we can choose λ optimally as well. Then how should λ be chosen? We want
to fit:

λ =
Y1[t]
Ytot[t]

=
1
2
− 1

4X [t]+2
, 1−λ =

Y2[t]
Ytot[t]

=
1
2
+

1
4X [t]+2

.

But now we see that the optimal value for λ depends on X [t], which is not a constant
over time! So estimating λ based on historical proportions will not work in the
presence of independent variables.



1 GTOP Reconciliation of Contemporaneous HTS Forecasts 19

1.4.3 Summary and Future Work

Unlike previous approaches, like bottom-up, top-down and generalized least-squares
forecasting, we propose to split the problem of hierarchical time series forecasting
into two parts: first one constructs the best possible forecasts for the time series with-
out worrying about aggregate consistency or theoretical restrictions like unbiased-
ness, and then one uses the GTOP reconciliation method proposed in Section 1.2 to
turn these forecasts into aggregate consistent ones. As shown by Theorems 1 and 2,
GTOP reconciliation can only make any given set of forecasts better, and the less
consistent the given forecasts are, the larger the improvement guaranteed by GTOP
reconciliation.

Our treatment is for the squared loss only, but, as pointed out in Section 1.2,
Theorems 1 and 2 readily generalize to any other loss that is based on a Bregman
divergence, like for example the Kullback-Leibler divergence. It would be useful to
work out this generalization in detail, including the appropriate choice of optimiza-
tion algorithm to compute the resulting Bregman projection.

In the experiments in Section 1.3, we have proposed some new methods for com-
ing up with the initial forecasts, but although they demonstrate the benefits of GTOP
reconciliation, these approaches are still rather simple. In future work, it would
therefore be useful to investigate more advanced ways of coming up with initial
forecasts, which allow for even more information to be shared between different
time series. For example, it would be natural to use a Bayesian approach to model
regions that are geographically close as random instances of the same distribution
on regions.

Finally, there seems room to do more with the prediction intervals for the GTOP
reconciled predictions as defined in (1.3). It would be interesting to explore data-
driven approaches to constructing these intervals, like for example those proposed
by Antoniadis et al. [2013].
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