Generalization Guarantees via Algorithm-dependent Rademacher Complexity

Tim van Erven

Joint work with:

Sarah Sachs

Liam Hodgkinson

Rajiv Khanna

Umut Şimşekli

Standard Batch Setting

Given:

- ▶ Data: $S^n = (Z_1, ..., Z_n)$ $\stackrel{i.i.d.}{\sim}$ \mathcal{D}
- ▶ Bounded loss: ℓ : $\Theta \times \mathcal{Z} \rightarrow [a, a+b]$
- ▶ Algorithm: $\hat{\theta} \equiv \text{Alg}(S^n) \in \Theta$

Want to control the generalization error:

$$R(\hat{\theta}) - \hat{R}(\hat{\theta}, S^n)$$

Where:

- $ightharpoonup \operatorname{Risk}: R(\theta) = \mathbb{E}_{Z \sim \mathcal{D}}[\ell(\theta, Z)]$
- ► Empirical risk: $\hat{R}(\theta, S^n) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, Z_i)$

Control via Mutual Information

Bound with mutual information [Catoni, 2007, Russo and Zou, 2016]:

$$\mathbb{E}[R(\hat{\theta}) - \hat{R}(\hat{\theta}, S^n)] \lesssim \sqrt{\frac{I(\hat{\theta}; S^n)}{n}}$$

Control via Mutual Information

Bound with mutual information [Catoni, 2007, Russo and Zou, 2016]:

$$\mathbb{E}[R(\hat{\theta}) - \hat{R}(\hat{\theta}, S^n)] \lesssim \sqrt{\frac{I(\hat{\theta}; S^n)}{n}}$$

Refined to conditional mutual information via symmetrization with a ghost sample [Steinke and Zakynthinou, 2020]:

$$\mathbb{E}[R(\hat{\theta}) - \hat{R}(\hat{\theta}, S^n)] \lesssim \sqrt{\frac{\mathrm{CMI}(\mathrm{Alg})}{n}}$$

Known limitations:

- No high probability bounds possible for CMI [Steinke and Zakynthinou, 2020]
- Bounds do not depend on loss function, so Steinke and Zakynthinou [2020] have variant of CMI to take advantage of e.g. smoothness of $\ell(\theta, z)$ in θ .

Standard Control via Rademacher Complexity

$$R(\hat{\theta}) - \hat{R}(\hat{\theta}, S^n) \le \sup_{\theta \in \Theta} \left(R(\theta) - \hat{R}(\theta, S^n) \right)$$
 (*)

Lemma (Algorithm-independent upper bound)

$$\mathbb{E}\left[\sup_{\theta\in\Theta}\left(R(\theta)-\hat{R}(\theta,S^n)\right)\right]\leq 2\operatorname{\mathbb{E}}_{S^n}[\operatorname{Rad}(\Theta,S^n)]$$

and, with probability at least $1 - \delta$,

$$\sup_{\theta \in \Theta} (R(\theta) - \hat{R}(\theta, S^n)) \le 2 \underset{S^n}{\mathbb{E}} [\text{Rad}(\Theta, S^n)] + b \sqrt{\frac{\log(2/\delta)}{2n}}$$

Empirical Rademacher complexity:

$$\operatorname{Rad}(\Theta, S^n) = \frac{1}{n} \operatorname{\mathbb{E}}[\sup_{\theta \in \Theta} \sum_{i=1}^n \sigma_i \ell(\theta, Z_i)],$$

where
$$\sigma = (\sigma_1, \dots, \sigma_n)$$
 with $\Pr(\sigma_i = -1) = \Pr(\sigma_i = +1) = 1/2$.

Control via Algorithm-dependent Rademacher Complexity

Lemma (Algorithm-dependent upper bound)

$$\mathbb{E}[R(\hat{\theta}) - \hat{R}(\hat{\theta}, S^n)] \leq 2 \underset{S^n, S^n}{\mathbb{E}}[\mathrm{Rad}(\hat{\Theta}^n, S^n_+)]$$

Control via Algorithm-dependent Rademacher Complexity

$$\hat{\Theta}^{n} := \left\{ \text{Alg}(S_{\sigma}^{n}) : \sigma \in \{-1, +1\}^{n} \right\} \subset \Theta.$$

$$S_{-}^{n} = (Z_{1}^{-1}, \dots, Z_{n}^{-1})$$

$$S_{+}^{n} = (Z_{1}^{+1}, \dots, Z_{n}^{+1})$$

$$S_{\sigma}^{n} = (Z_{1}^{\sigma_{1}}, \dots, Z_{n}^{\sigma_{n}})$$

Lemma (Algorithm-dependent upper bound)

$$\mathbb{E}[R(\hat{\theta}) - \hat{R}(\hat{\theta}, S^n)] \leq 2 \underset{S^n, S^n}{\mathbb{E}}[\operatorname{Rad}(\hat{\Theta}^n, S^n_+)]$$

- Like normal Rademacher bound, but with $\hat{\Theta}^n$ instead of Θ
- Symmetrization with ghost sample S_{-}^{n} like CMI
- Proof: similar to standard proof, but upper bound $\hat{\theta}$ by supremum over θ later, after symmetrization

Control via Algorithm-dependent Rademacher Complexity

$$\hat{\Theta}^{n} := \left\{ \text{Alg}(S_{\sigma}^{n}) : \sigma \in \{-1, +1\}^{n} \right\} \subset \Theta.$$

$$S_{-}^{n} = (Z_{1}^{-1}, \dots, Z_{n}^{-1})$$

$$S_{+}^{n} = (Z_{1}^{+1}, \dots, Z_{n}^{+1})$$

$$S_{\sigma}^{n} = (Z_{1}^{\sigma_{1}}, \dots, Z_{n}^{\sigma_{n}})$$

Lemma (Algorithm-dependent upper bound)

$$\mathbb{E}[R(\hat{\theta}) - \hat{R}(\hat{\theta}, S^n)] \leq 2 \underset{S^n \subseteq S^n}{\mathbb{E}}[\operatorname{Rad}(\hat{\Theta}^n, S^n_+)]$$

and, with probability at least $1 - \delta$,

$$R(\hat{\theta}) - \hat{R}(\hat{\theta}, S^n) \le 4 \operatorname{ess\,sup}_{S^n, S^n_+} \operatorname{Rad}(\hat{\Theta}^n, S^n_+) + b\sqrt{\frac{8 \log(2/\delta)}{n}}$$

Refines special case of a result by Foster et al. [2019]

Consequences 1: Topological Bounds

Define the (random) set
$$\hat{\Theta} := \bigcup_{n=1}^{\infty} \hat{\Theta}^n$$

Minkowski dimension: $\overline{\dim}_{\mathcal{M}}(\hat{\Theta}) = \limsup_{\delta \to 0^+} \frac{\log \operatorname{Cover}(\hat{\Theta}, \|\cdot\|, \delta)}{\log(1/\delta)}$

Theorem

Suppose $\ell(\theta, z)$ is Lipschitz continuous in θ . Then

$$\limsup_{n\to\infty} \frac{\mathbb{E}[R(\hat{\theta}) - \hat{R}(\hat{\theta},S^n)]}{\sqrt{\log(n)/n}} \leq b\sqrt{2\,\mathbb{E}[\dim_{\mathcal{M}}(\hat{\Theta})]}.$$

- Avoids bad I_{∞} term (much larger than regular mutual information) from previous topological bounds [Simsekli et al., 2020]
- ► Non-asymptotic result at the poster

Consequences 2: Generalization for SGD

Greatly **simplified proof** of result by Park et al. [2022]:

Suppose $z \mapsto \ell(\theta, z)$:

- ightharpoonup α -strongly convex
- \triangleright β -smooth
- ► *L*-Lipschitz

+ Other standard assumptions

Theorem

Then, for T iterations of stochastic optimization by stochastic gradient descent with constant step size $\eta \in (0, \beta)$, w.p. $\geq 1 - \delta$

$$R(\hat{\theta}) - \hat{R}(\hat{\theta}, S^n) = O\left(\sqrt{\frac{\log n}{\log(\frac{1}{\gamma})n}} + \sqrt{\frac{\log(1/\delta)}{n}} + \frac{L}{n}\right),$$

where
$$\gamma = \sqrt{1 - 2\alpha\eta + \alpha\beta\eta^2}$$
.

Consequences 3: Properties Like CMI

Generalization for VC Classes:

For binary classification with $V = VCdim(\Theta)$:

$$\operatorname{Rad}(\hat{\Theta}^n, S_+^n) \leq \operatorname{Rad}(\Theta, S_+^n) = O\left(\sqrt{\frac{V \log n}{n}}\right)$$

Generalization for compression schemes:

If Alg is a k-compression scheme, then

$$\operatorname{Rad}(\hat{\Theta}^n, S_+^n) = O\left(\sqrt{\frac{k \log n}{n}}\right)$$

Summary

Algorithm-dependent Rademacher complexity:

▶ Rademacher complexity of algorithm- and data-dependent set $\hat{\Theta}^n$ controls generalization error

Consequences:

- 1. New topological generalization bounds
- 2. Greatly simplified proof of a generalization bound for SGD
- 3. Generalization for VC classes and compression schemes (like CMI)

References

- O. Catoni. Pac-Bayesian supervised classification: The thermodynamics of statistical learning. Lecture Notes — Monograph Series, Volume 56, 2007.
- D. J. Foster, S. Greenberg, S. Kale, H. Luo, M. Mohri, and K. Sridharan. Hypothesis set stability and generalization. In *Advances in Neural Information Processing Systems* 32, 2019.
- S. Park, U. Şimşekli, and M. A. Erdogdu. Generalization bounds for stochastic gradient descent via localized ε-covers. In Advances in Neural Information Processing Systems, 2022.
- D. Russo and J. Zou. Controlling bias in adaptive data analysis using information theory. In *Artificial Intelligence and Statistics*, 2016.
- U. Simsekli, O. Sener, G. Deligiannidis, and M. A. Erdogdu. Hausdorff dimension, heavy tails, and generalization in neural networks. In *Advances in Neural Information Processing Systems* 33, 2020.
- T. Steinke and L. Zakynthinou. Reasoning about generalization via conditional mutual information. In *COLT*, 2020.