COLT 2023

Generalization Guarantees via
Algorithm-dependent Rademacher Complexity

% UNIVERSITY
“% OF AMSTERDAM

Tim van Erven

Joint work with:

kY

, b i
Sarah Sachs Liam Hodgkinson  Rajiv Khanna Umut Simsekli



Standard Batch Setting

Given:
> Data: S"=(Z,....Z,) & D
» Bounded loss: ¢:© x Z — [a,a+ b]

> Algorithm: 6 = Alg(5") € ©

Want to control the

R(0) — R(6,5")

Where:
> Risk: R(6) = Ezop[l(0, Z)]
> Empirical risk: R(6,S") =137 08, Z)

n
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Control via Mutual Information
Bound with mutual information [Catoni, 2007, Russo and Zou, 2016]:

1(6; S)

n

E[R() — R(6, "] <
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Control via Mutual Information

Bound with [Catoni, 2007, Russo and Zou, 2016]:
E[R(9) — R(0,S" V
Refined to via symmetrization with a

ghost sample [Steinke and Zakynthinou, 2020]:

E[R(D) - R(D. 5] [CMI( Alg

Known limitations:

» No high probability bounds possible for CMI [Steinke and
Zakynthinou, 2020]

» Bounds do not depend on loss function, so Steinke and Zakynthinou
[2020] have variant of CMI to take advantage of e.g. smoothness of
0(0,z) in 6.
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Standard Control via Rademacher Complexity

R(B) - R(9,5") < sup (R(6) — R(6,5") (*)
0O

Lemma (Algorithm-independent upper bound)

E [328 (R(6) — R(8,5™)] < 2E ]

and, with probability at least 1 — ¢,

log(2/6)

sup (R(0) — R0, M) < EE[ ]+ b o

0cOe

Empirical Rademacher complexity:

Rad(©,S") = —E[supzaae Z)],

7 0€0

where o = (01, ...,0,) with Pr(o; = —1) = Pr(o; = +1) = 1/2.
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Control via Algorithm-dependent Rademacher
Complexity

Lemma (Algorithm-dependent upper bound)

E[R(0) — R(9,S™)] < 2 E [Rad(©", ST)]
—9+
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Control via Algorithm-dependent Rademacher
Complexity

O":= {Alg(S") : 0 € {~1,+1}"} Cc ©.

n __ —1 —1
S—_(Zl 7"'7Zn ) sg:(zltTl?_'.7Z,rIr,,)
St=(Zt....ZY

Lemma (Algorithm-dependent upper bound)

E[R(0) — R(A,S™)] < 2 JE, [Rad(©", ST)]

— o4

» Like normal Rademacher bound, but with ©" instead of ©
» Symmetrization with ghost sample S” like CMI

» Proof: similar to standard proof, but upper bound 0 by supremum

over 0 later, after symmetrization
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Control via Algorithm-dependent Rademacher
Complexity
e":= [Alg(S)):0 € {-1,+1}"} C@O.

ST =(Z7t...,Z7h

n

ST =(Z...,ZY

n

Lemma (Algorithm-dependent upper bound)

E[R(A) — R(9,5™)] < 2 E, [Rad(©", S7)]
— 24
and, with probability at least 1 — ¢,

R() — R(B,S™) < 4esssupRad(©)", 57) + by/ 2 IOg’()2/5)

sn.,sn

> Refines special case of a result by Foster et al. [2019]
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Consequences 1: Topological Bounds

Define the (random) set © := [J52, ©"
T T og Cover(®, ]| - [, )
Minkowski dimension: dim . (®) = lim sup -
5—0* log(1/4)

Theorem
Suppose £(0, z) is Lipschitz continuous in 6. Then

lim sup E[R(j)lo;(%sn)] < by/2E[dim . (©)].

n—oo

> Avoids bad I, term (much larger than regular mutual information)
from previous topological bounds [Simsekli et al., 2020]

» Non-asymptotic result at the poster
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Consequences 2: Generalization for SGD

Greatly simplified proof of result by Park et al. [2022]:

Suppose z — (0, z):
» a-strongly convex
» (5-smooth
» [-Lipschitz

Then, for T iterations of stochastic optimization by
with constant step sizen € (0,5), w.p. >1—14

R() — R(D,5™) = o(\/ logn_ \/ B L 0,

+ Other standard assumptions

log(3)n n n

where v = /1 — 2an + afBn?.
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Consequences 3: Properties Like CMI

Generalization for VC Classes:
For binary classification with V = VCdim(©):

Rad(6",5") < Rad(©,S") = o(\/@)

Generalization for compression schemes:
If Alg is a k-compression scheme, then

Rad(©",57) — o(,/@)
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Summary

Rademacher complexity of algorithm- and data-dependent set 6r
controls generalization error

1. New topological generalization bounds

2. Greatly simplified proof of a generalization bound for SGD

3. Generalization for VC classes and compression schemes (like CMI)
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