General Mathematics Colloquium Leiden, December 4, 2014

An Introduction to Game-theoretic Online Learning

Tim van Erven

Outline

- Introduction to Online Learning
 - Game-theoretic Model
 - Regression example: Electricity
 - Classification example: Spam
- Three algorithms
- Tuning the Learning Rate

Game-Theoretic Online Learning

- Predict data that arrive one by one
- Model: repeated game against an adversary
- Applications:
 - spam detection
 - data compression
 - online convex optimization
 - predicting electricity consumption
 - predicting air pollution levels

Repeated Game (Informally)

- Sequentially predict outcomes x_1, x_2, \ldots
- Measure quality of prediction a_t by loss $\ell(x_t, a_t)$

- Before predicting x_t, get predictions (=advice) from K experts
- Goal: to predict as well as the best expert over *T* rounds.

Data and Advice can be adversarial

Repeated Game

- Every round $t = 1, \ldots, T$:
 - **1.** Get expert predictions a_t^k (k = 1, ..., K)
 - **2.** Predict a_t^*
 - **3**. Outcome x_t is revealed
 - **4.** Measure losses $\ell(x_t, a_t^*), \ell(x_t, a_t^k)$

Repeated Game

- Every round $t = 1, \ldots, T$:
 - **1.** Get expert predictions a_t^k (k = 1, ..., K)
 - **2.** Predict a_t^*
 - **3**. Outcome x_t is revealed
 - **4.** Measure losses $\ell(x_t, a_t^*), \ell(x_t, a_t^k)$
- Best expert: $L^* = \min_k \sum_{t=1}^T \ell(x_t, a_t^k)$ • Goal: minimize regret $\sum_{t=1}^T \ell(x_t, a_t^*) - L^*$

Outline

- Introduction to Online Learning
 - Game-theoretic Model
 - Regression example: Electricity
 - Classification example: Spam
- Three algorithms
- Tuning the Learning Rate

Regression Example: Electricity

- Électricité de France: predict electricity demand one day ahead, every day [Devaine, Gaillard, Goude, Stoltz, 2013]
- Experts: *K* complicated regression models

• Loss:
$$\ell(x, a) = (a - x)^2$$

Regression Example: Electricity

- Électricité de France: predict electricity demand one day ahead, every day [Devaine, Gaillard, Goude, Stoltz, 2013]
- Experts: *K* complicated regression models

• Loss:
$$\ell(x, a) = (a - x)^2$$

• Best model after one year: $L^* = \min_k \sum_{t=1}^{T} \ell(x_t, a_t^k)$ • How much worse are we? $\sum_{t=1}^{T} \ell(x_t, a_t^*) - L^*$

Outline

- Introduction to Online Learning
 - Game-theoretic Model
 - Regression example: Electricity
 - Classification example: Spam
- Three algorithms
- Tuning the Learning Rate

Example: Spam Detection

	Subject	From	
	🛛 Gratis Turkije	Reizen Center	$x_1 = spar$
l	■ uitnodiging hoorzitting reorganisatie FEW dinsdag 2	0 se Ivo van Stokkum	$x_2 = $ ham
	🖩 Re: Urgent Business Inquiry.	Ubc Ltd	$x_3 = spar$
	Reminder: first colloquium	Jeu, R.M.H. de	$x_4 = ham$
	@ Informatie over VUnet	College van Bestuur	$x_5 = ham$
	■ USD 500 Free Deposit at PartyPoker!	PartyPoker	$x_6 = spar$
4		UK INTL. LOTTERY PROMOTION	$x_7 = spar$
ł	abachelor/master diploma uitreiking 14 september	Sotiriou, M.	$x_8 = ham$
M	HAPPY NEW YEAR 2068	Anil Shilpakar	$x_9 = spar$
Ì	Thailand Package	Anil Shilpakar	$x_{10} = $ spar

Ì

Classification Example: Spam

- Experts: K spam detection algorithms
- Messages: $x \in \{ham, spam\}$ Predictions: $a \in \{ham, spam\}$

• LOSS:

$$\ell(x, a) = \begin{cases} 0 & \text{if correct: } a = x \\ 1 & \text{if wrong: } a \neq x \end{cases}$$

 Regret: extra mistakes we make over best algorithm on T messages

Outline

- Introduction to Online Learning
- Three algorithms:
 - 1. Halving
 - 2. Follow the Leader (FTL)
 - 3. Follow the Regularized Leader (FTRL)
- Tuning the Learning Rate

A First Algorithm: Halving

Suppose one of the spam detectors is perfect

Keep track of experts without mistakes so far:
S_t = {k | expert k made no mistakes before round t}
Halving algorithm:

 $a_t^* =$ majority vote among experts in S_t

• Theorem: regret $\leq \log_2 K$

A First Algorithm: Halving

Theorem: regret $\leq \log_2 K$

• Does not grow with T

Proof:

- Suppose halving makes m mistakes, regret = m 0
- Every mistake eliminates at least half of S_t
- m is at most $\log_2 |S_1| = \log_2 K$ mistakes

Outline

- Introduction to Online Learning
- Three algorithms:
 - 1. Halving
 - 2. Follow the Leader (FTL)
 - 3. Follow the Regularized Leader (FTRL)
- Tuning the Learning Rate

Follow the Leader

- Want to remove unrealistic assumption that one expert is perfect
- FTL: copy the leader's prediction
- The leader at time *t*:

$$\hat{k}_t = \operatorname*{arg\,min}_k L_{t-1}^k$$
 (break ties randomly)
where $L_t^k = \sum_{s=1}^t \ell(x_s, a_s^k)$ is cumulative loss for
expert k

FTL Works with Perfect Expert

Theorem: Suppose one of the spam detectors is perfect. Then Expected regret = $O(\log K)$

Proof:

- Expected regret = E[nr. mistakes] 0
- Worst case: experts get one loss in turn
- E[nr. mistakes] = $\frac{1}{K} + \frac{1}{K-1} + \dots + \frac{1}{2} = O(\log K)$

FTL: More Good News

No assumption of perfect expert
 Theorem: regret ≤ nr. leader changes/ties

FTL: More Good News

No assumption of perfect expert
 Theorem: regret ≤ nr. leader changes/ties

- Proof sketch:
 - No leader change: our loss = loss of leader, so the regret stays the same
 - Leader change: our regret increases at most by 1 (range of losses)

FTL: More Good News

No assumption of perfect expert
 Theorem: regret ≤ nr. leader changes/ties

- Proof sketch:
 - No leader change: our loss = loss of leader, so the regret stays the same
 - Leader change, our regret increases at most by 1 (range of losses)
- Works well for i.i.d. losses, because the leader changes only finitely many times w.h.p.

 4 experts with Bernoulli 0.1, 0.2, 0.3, 0.4 losses; regret = O(log K)

FTL Worst-case Losses

FTL Worst-case Losses

Two experts with tie/leader change every round:

Expert 1	1	0	1	0	1	0
Expert 2	0	1	0	1	0	1
FTL	1/2	1	1/2	1	1/2	1

- Both experts have cumulative loss: $L^* = \frac{T}{2}$ • Regret $= \frac{3T}{4} - L^* = \frac{T}{4}$ is linear in T
- Problem: FTL too sure of itself when no ties!

Outline

- Introduction to Online Learning
- Three algorithms:
 - 1. Halving
 - 2. Follow the Leader (FTL)
 - 3. Follow the Regularized Leader (FTRL)
- Tuning the Learning Rate

Solution: Be Less Sure!

- Pull FTL choices towards uniform distribution
- Follow the Leader:

- leader: $\hat{k}_t = \arg\min_k L_{t-1}^k$

- as distribution: $\hat{w}_t = \underset{w}{\operatorname{arg\,min}} \underset{k \sim w}{\mathbb{E}} [L_{t-1}^k]$

• Follow the **Regularized** Leader:

$$\hat{w}_t = rgmin_w \mathbb{E}_{k \sim w} [L_{t-1}^k] + \frac{1}{\eta} \mathrm{KL}(w \| u)$$

- add penalty for being away from uniform
Kullback-Leibler divergence in this talk

The Learning Rate

Follow the Regularized Leader:

$$\hat{w}_t = \underset{w}{\operatorname{arg\,min}} \mathop{\mathbb{E}}_{k \sim w} [L_{t-1}^k] + \frac{1}{\eta} \operatorname{KL}(w \| u)$$

• Very sensitive to choice of learning rate $\eta > 0$

$\eta ightarrow \infty$	$\eta \to 0$
Follow the Leader	Don't learn at all

Outline

- Introduction to Online Learning
- Three algorithms
- Tuning the Learning Rate:
 - Safe tuning
 - The Price of Robustness
 - Learning the Learning Rate

The Worst-case Safe Learning Rate

Theorem: For FTRL regret $\leq \frac{\ln K}{\eta} + \frac{\eta T}{8}$

$$\eta = \sqrt{\frac{8\ln K}{T}} - \operatorname{regret} \le \sqrt{\frac{T\ln(K)}{2}}$$

- No (probabilistic) assumptions about data!
- Optimal
- $O(\sqrt{T})$ is standard in online learning

Outline

- Introduction to Online Learning
- Three algorithms
- Tuning the Learning Rate:
 - Safe tuning
 - The Price of Robustness
 - Learning the Learning Rate

 Safe tuning does much worse than FTL on i.i.d. losses

The Price of Robustness

Method	Special Case of FTRL	Perfect Expert Data	IID Data	Worst-case Data
Halving	no	$O(\log K)$	undefined	undefined
Follow the Leader	$\eta=\infty$ (very large)	$O(\log K)$	$O(\log K)$	$\Theta(T)$
FTRL with Worst- case Safe Tuning	$\eta = \sqrt{\frac{8 \ln K}{T}}$ (small)	$O(\sqrt{T\ln K})$	$O(\sqrt{T \ln K})$	$O(\sqrt{T \ln K})$

Can we adapt to optimal eta automatically?

Outline

- Introduction to Online Learning
- Three algorithms
- Tuning the Learning Rate:
 - Safe tuning
 - The Price of Robustness
 - Learning the Learning Rate

A Failed Approach: Being Meta

- We want $\min\{\operatorname{regret}_{FTL}, \operatorname{regret}_{Safe}\}$
- Idea: meta-problem
 - Expert 1: FTL
 - Expert 2: FTRL with Safe Tuning

A Failed Approach: Being Meta

- We want $\min\{\operatorname{regret}_{FTL}, \operatorname{regret}_{Safe}\}$
- Idea: meta-problem
 - Expert 1: FTL
 - Expert 2: FTRL with Safe Tuning
- $\text{Regret} = \min\{\text{regret}_{FTL}, \text{regret}_{Safe}\} + \text{meta-regret}$
- Best of both worlds if meta-regret small!

A Failed Approach: Being Meta

- We want $\min\{\operatorname{regret}_{FTL}, \operatorname{regret}_{Safe}\}$
- Idea: meta-problem
 - Expert 1: FTL
 - Expert 2: FTRL with Safe Tuning
- $\text{Regret} = \min\{\text{regret}_{FTL}, \text{regret}_{Safe}\} + \text{meta-regret}$
- Best of both worlds if meta-regret small!
- If $\operatorname{regret}_{\operatorname{FTL}} = O(\log K)$ and $\operatorname{meta-regret} = O(\sqrt{T})$, then $\operatorname{regret} = O(\sqrt{T})$ is too big!

Partial Progress

- Safe tuning: Regret = $O(\sqrt{T \ln(K)})$
- Improvement for small losses:

 w_t

$$\mathsf{Regret} = O\left(\sqrt{L^* \ln(K)}\right)$$

Partial Progress

- Safe tuning: Regret = $O(\sqrt{T \ln(K)})$
- Improvement for small losses:

$$\operatorname{Regret} = O\left(\sqrt{L^* \ln(K)}\right) \quad \operatorname{variance} \text{ of } w_t$$

• Variance Bounds: $O\left(\sqrt{\sum_t v_t \ln(K)}\right)$

- Cesa-Bianchi, Mansour, Stoltz, 2007
- vE, Grünwald, Koolen, De Rooij, 2011
- De Rooij, vE, Grünwald, Koolen, 2014

Partial Progress

- Safe tuning: Regret = $O(\sqrt{T \ln(K)})$
- Improvement for small losses:

$$\mathbf{Regret} = O\left(\sqrt{L^* \ln(K)}\right) \quad \text{variance of } w_t$$

• Variance Bounds: $O\left(\sqrt{\sum_t v_t \ln(K)}\right)$

 $O\left(\sqrt{\frac{L^*(T-L^*)}{T}\ln(K)}\right)$

Regret is a Difficult Function 1/2

 All the previous solutions could potentially end up in wrong local minimum

Regret is a Difficult Function 2/2

- Regret as a function of T for fixed η is nonmonotonic.
- This means some η may look very bad for a while, but end up being very good after all
- How do we see which η 's are good?
- Use (best-possible) monotonic lower-bound per η

• Koolen, vE, Grünwald, 2014

• Track performance for grid of learning rates η

- Switch between them
 Pay for switching, but not too much
- Running time as fast as for single fixed η
 does not depend on size of grid

Theorems:

 $\begin{aligned} \operatorname{regret} &\leq C \cdot \operatorname{regret}_{\mathrm{FTL}} \\ \operatorname{regret} &\leq C \cdot \operatorname{regretbound}_{\mathrm{Safe}} \\ \operatorname{regret} &\leq C \cdot \operatorname{regretbound}_{\mathrm{Variance}} \end{aligned}$

• For all interesting η : regret $\leq F \cdot \operatorname{regret}_{\eta}$ $F = O(\ln(K) \ln^{1+\epsilon}(T)) = \operatorname{polylog}(K,T)$

• Koolen, vE, Grünwald, 2014

The Price of Robustness

Method	Special Case of FTRL	Perfect Expert Data	IID Data	Worst-case Data	Compared to Optimal η
Follow the Leader	$\eta=\infty$ (very large)	$O(\log K)$	$O(\log K)$	$\Theta(T)$	no useful guarantees
FTRL with Worst-case Safe Tuning	$\eta = \sqrt{rac{8\ln K}{T}}$ (small)	$O(\sqrt{T\ln K})$	$O(\sqrt{T\ln K})$	$O(\sqrt{T\ln K})$	no useful guarantees
LLR	$\eta = adaptive$	$O(\log K)$	$O(\log K)$	$O(\sqrt{T\ln K})$	polylog(K,T) factor

Can we adapt to optimal eta automatically? Yes!

Game-theoretic Online Learning

- e.g. electricity forecasting, spam detection

- Three algorithms:
 - Halving, Follow the (Regularized) Leader
- Tuning the Learning Rate:
 - Safe tuning pays the Price of Robustness
 - Learning the learning rate adapts to the optimal learning rate automatically

Future Work

• So far: compete with the **best expert**

 Online Convex Optimization: compete with the best convex combination of experts

 Future work: extend LLR to online convex optimization

References

- Cesa-Bianchi and Lugosi. Prediction, learning, and games. 2006.
- Cesa-Bianchi, Mansour, Stoltz. Improved second-order bounds for prediction with expert advice. Machine Learning, 66(2/3):321–352, 2007.
- Devaine, Gaillard, Goude, Stoltz. Forecasting electricity consumption by aggregating specialized experts. Machine Learning, 90(2):231-260, 2013.
- Van Erven, Grünwald, Koolen and De Rooij. Adaptive Hedge. NIPS, 2011.
- De Rooij, Van Erven, Grünwald, Koolen. Follow the Leader If You Can, Hedge If You Must. Journal of Machine Learning Research, 2014.
- Koolen, Van Erven, Grünwald. Learning the Learning Rate for Prediction with Expert Advice. NIPS, 2014.