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● Introduction to Online Learning
– Game-theoretic Model

– Regression example: Electricity
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● Three algorithms
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Game-Theoretic Online Learning

● Predict data that arrive one by one
● Model: repeated game against an adversary
● Applications:

– spam detection

– data compression

– online convex optimization

– predicting electricity consumption

– predicting air pollution levels

– ...



  

Repeated Game (Informally)

● Sequentially predict outcomes 
● Measure quality of prediction     by loss

● Before predicting    , get predictions (=advice)
from     experts

● Goal: to predict as well as the best expert over
    rounds.

● Data and Advice can be adversarial



  

Repeated Game

●  Every round                 :

1. Get expert predictions 

2. Predict  

3. Outcome     is revealed  

4. Measure losses



  

Repeated Game

●  Every round                 :

1. Get expert predictions 

2. Predict  

3. Outcome     is revealed  

4. Measure losses

● Best expert:

● Goal: minimize regret
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Regression Example: Electricity

● Électricité de France: predict electricity
demand one day ahead, every day 

● Experts:    complicated regression models
● Loss:

   

[Devaine, Gaillard,
Goude, Stoltz, 2013]



  

Regression Example: Electricity

● Électricité de France: predict electricity
demand one day ahead, every day 

● Experts:    complicated regression models
● Loss:

● Best model after one year:

● How much worse are we?   

[Devaine, Gaillard,
Goude, Stoltz, 2013]
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Example: Spam Detection

spam
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Classification Example: Spam

● Experts:    spam detection algorithms
● Messages:

Predictions:
● Loss:

● Regret: extra mistakes we make over best
algorithm on    messages
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● Introduction to Online Learning
● Three algorithms:

1. Halving

2. Follow the Leader (FTL)

3. Follow the Regularized Leader (FTRL)

● Tuning the Learning Rate

 



  

A First Algorithm: Halving

● Suppose one of the spam detectors is perfect

● Keep track of experts without mistakes so far:

● Halving algorithm:

● Theorem:   regret 



  

A First Algorithm: Halving

Theorem:   regret 

● Does not grow with 

Proof:
● Suppose halving makes     mistakes, regret = 

● Every mistake eliminates at least half of    

●     is at most                               mistakes
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Follow the Leader

● Want to remove unrealistic assumption that
one expert is perfect

● FTL: copy the leader's prediction
● The leader at time  :

where                          is cumulative loss for
expert k

(break ties randomly)



  

FTL Works with Perfect Expert

Theorem: Suppose one of the spam detectors
is perfect. Then Expected regret

Proof:
● Expected regret = E[nr. mistakes] - 0
● Worst case: experts get one loss in turn
● E[nr. mistakes]



  

FTL: More Good News

● No assumption of perfect expert

Theorem: regret 



  

FTL: More Good News

● No assumption of perfect expert

Theorem: regret 

● Proof sketch:
– No leader change: our loss = loss of leader, so

the regret stays the same

– Leader change: our regret increases at most
by 1 (range of losses) 



  

FTL: More Good News

● No assumption of perfect expert

Theorem: regret 

● Proof sketch:
– No leader change: our loss = loss of leader, so

the regret stays the same

– Leader change, our regret increases at most
by 1 (range of losses)

● Works well for i.i.d. losses, because the leader
changes only finitely many times w.h.p. 



  

FTL on IID Losses

● 4 experts with Bernoulli 0.1, 0.2, 0.3, 0.4
losses; regret = O(log K) 



  

FTL Worst-case Losses



  

FTL Worst-case Losses

● Two experts with tie/leader change every
round:

● Both experts have cumulative loss:
● Regret                         is linear in 

● Problem: FTL too sure of itself when no ties!

Expert 1 1 0 1 0 1 0

Expert 2 0 1 0 1 0 1

FTL 1/2 1 1/2 1 1/2 1
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Solution: Be Less Sure!

● Pull FTL choices towards uniform distribution
● Follow the Leader:

– leader: 

– as distribution:

● Follow the Regularized Leader:

– add penalty for being away from uniform;
Kullback-Leibler divergence in this talk



  

The Learning Rate

● Follow the Regularized Leader:

● Very sensitive to choice of learning rate 

Follow the Leader Don't learn at all
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– The Price of Robustness

– Learning the Learning Rate

 



  

The Worst-case Safe Learning Rate

Theorem: For FTRL regret

                                 regret

● No (probabilistic) assumptions about data!
● Optimal
●            is standard in online learning
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The Price of Robustness

● Safe tuning does much worse than FTL on
i.i.d. losses



  

The Price of Robustness

Method Special Case
of FTRL 

Perfect
Expert Data

IID Data Worst-case
Data

Halving no undefined undefined

Follow the Leader

(very large)

FTRL with Worst-
case Safe Tuning

(small)

Can we adapt to optimal eta automatically?
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A Failed Approach: Being Meta

● We want 
● Idea: meta-problem

– Expert 1: FTL

– Expert 2: FTRL with Safe Tuning
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A Failed Approach: Being Meta

● We want 
● Idea: meta-problem

– Expert 1: FTL

– Expert 2: FTRL with Safe Tuning

● Regret 
● Best of both worlds if meta-regret small!
● If                               and                               ,

then                        is too big!



  

Partial Progress

● Safe tuning: Regret
● Improvement for small losses:

Regret



  

Partial Progress

● Safe tuning: Regret
● Improvement for small losses:

● Variance Bounds:

Regret variance of

● Cesa-Bianchi, Mansour, Stoltz, 2007
● vE, Grünwald, Koolen, De Rooij, 2011
● De Rooij, vE, Grünwald, Koolen, 2014



  

Partial Progress

● Safe tuning: Regret
● Improvement for small losses:

● Variance Bounds:

Regret variance of



  

Regret is a Difficult Function 1/2

● All the previous solutions could potentially end
up in wrong local minimum



  

Regret is a Difficult Function 2/2

● Regret as a function of T for fixed   is non-
monotonic.

● This means some   may look very bad for a
while, but end up being very good after all

● How do we see which   's are good?
● Use (best-possible) monotonic lower-bound 

per 



  

Learning the Learning Rate

● Koolen, vE, Grünwald, 2014



  

Learning the Learning Rate

● Track performance for grid of learning rates

● Switch between them
– Pay for switching, but not too much

● Running time as fast as for single fixed
–  does not depend on size of grid



  

Learning the Learning Rate

Theorems:

● For all interesting   :

} As good as
all previous
methods

polylog(K,T)



  

Learning the Learning Rate

●  Koolen, vE, Grünwald, 2014



  

The Price of Robustness

Method Special Case of
FTRL 

Perfect
Expert Data

IID Data Worst-case
Data

Compared to
Optimal 

Follow the
Leader

(very large)

no useful
guarantees

FTRL with
Worst-case
Safe Tuning

(small)

no useful
guarantees

LLR polylog(K,T)
factor

Can we adapt to optimal eta automatically? Yes!



  

Summary                

● Game-theoretic Online Learning
– e.g. electricity forecasting, spam detection

● Three algorithms:
– Halving, Follow the (Regularized) Leader

● Tuning the Learning Rate:
– Safe tuning pays the Price of Robustness

– Learning the learning rate adapts to the
optimal learning rate automatically
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Future Work

● So far: compete with the best expert

● Online Convex Optimization: compete with the
best convex combination of experts

● Future work: extend LLR to online convex
optimization
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