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Example: Betting on Football Games

Precursor to modern football in China,
Han Dynasty (206 BC – 220 AD)

I Before every match t in the English Premier
League, my PhD student Dirk van der Hoeven
wants to predict the goal difference Yt

I Given feature vector Xt ∈ Rd , he may predict
Ŷt = wᵀ

t Xt with a linear model

I After the match: observe Yt

I Measure loss by ft(wt) = (Yt − Ŷt)
2 and

improve parameter estimates: wt → wt+1

Goal: Predict almost as well as the best possible parameters u:

RegretuT =
T∑
t=1

ft(wt)−
T∑
t=1

ft(u)
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Online Convex Optimization

Parameters w take values in a convex domain W ⊂ Rd

1: for t = 1, 2, . . . ,T do

2: Learner estimates wt ∈ W
3: Nature reveals convex loss function ft :W → R
4: end for

Viewed as a zero-sum game against Nature:

V = min
w1

max
f1

min
w2

max
f2
· · · min

wT

max
fT

max
u∈W

RegretuT
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Online Gradient Descent

w̃t+1 = wt − ηt∇ft(wt)

wt+1 = min
w∈W

‖w̃t+1 −w‖

Theorem (Zinkevich, 2003)

Suppose W compact with diameter at most D, and ‖∇ft(wt)‖ ≤ G.
Then online gradient descent with ηt = D

G
√
t
guarantees

RegretuT ≤
3

2
GD
√
T

for any choices of Nature.

Without further assumptions, this is optimal (up to a constant factor).
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Von Neumann’s Minimax Theorem
A Minimax Theorem:

inf
a∈A

sup
b∈B

f (a, b) = sup
b∈B

inf
a∈A

f (a, b) (*)

Von Neumann’s Minimax Theorem:

I f (a, b) = aᵀMb is the pay-off of a two-player zero-sum game, for an
m × n pay-off matrix M.

I a ∈ ∆m and b ∈ ∆n are probability vectors that represent mixed
strategies.

Classical proof by Nash requires Brouwer’s fixed-point theorem.

Theorem (Variant of Freund, Schapire, 1999, Cesa-Bianchi, Lugosi, 2006)

(*) holds if:

I f (a, b) convex in a, concave in b;

I A ⊂ Rm compact and convex; B ⊂ Rn convex;

I ‖∇af (a, b)‖ ≤ G <∞ for all a, b;

I supb f (a, b) <∞ for all a
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An Elementary Proof Using OCO, Part I
i.) inf

a∈A
sup
b∈B

f (a, b) ≥ sup
b∈B

inf
a∈A

f (a, b): Moving second gives advantage.

ii.) inf
a∈A

sup
b∈B

f (a, b) ≤ sup
b∈B

inf
a∈A

f (a, b):

Lemma

There exist a1, . . . , aT and b1, . . . , bT such that:

T∑
t=1

f (at , bt) ≤ inf
a

T∑
t=1

f (a, bt) + c
√
T

f (at , bt) ≥ sup
b

f (at , b)− 1

T

Proof.

I Select at depending on b1, . . . , bt−1 using online gradient descent on
ft(a) = f (a, bt).

I Let bt be the worst response to at up to ε = 1/T .
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An Elementary Proof Using OCO, Part II

inf
a∈A

sup
b

f (a, b) ≤ sup
b

f
( 1

T

T∑
t=1

at , b
)
≤ sup

b

1

T

T∑
t=1

f
(
at , b

)

≤ 1

T

T∑
t=1

sup
b

f
(
at , b

)
≤ 1

T

T∑
t=1

f
(
at , bt

)
+

1

T

≤ inf
a

1

T

T∑
t=1

f
(
a, bt

)
+

c
√
T

T
+

1

T

≤ inf
a
f
(
a,

1

T

T∑
t=1

bt
)

+
c
√
T

T
+

1

T

≤ sup
b

inf
a
f
(
a, b
)

+
c
√
T

T
+

1

T

and let T →∞.
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Online Portfolio Selection

Investing without a stochastic model:

I Sequential investment in d assets

I xt,i ≥ 0: ratio between closing and opening
price for i-th asset in trading period t

I Reinvest fraction wt,i of money in asset i

I Trader’s wealth grows by factor wᵀ
t xt

I ft(w) = − log(wᵀxt)

The Bitcoin (XBT) to EUR exchange rate
crashing (again) after China announces trading
restrictions. (Figure from www.xe.com.)

Theorem (Cover,1991)

There exists an algorithm with runtime O(T d) that guarantees

RegretuT = O(d logT )

for any asset prices x1, . . . ,xT . This is optimal.

run-time: O(T ) O(T 2) O(T 3) O(T 4)
max. data size: 1010 (Google) 105 (big data) 2000 (data) 300 (small data)
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Open Problem (for 27 years)

Is there an algorithm for online portfolio selection with O(T 2) (or
preferably O(T )) runtime that also guarantees O(d logT ) regret?

State of the Art
I O(T ) runtime, but O(

√
dT log d) regret

I O(T ) runtime and O(dG logT ) regret, but assumes bounded gradients

‖∇ft(wt)‖ = ‖xt‖
w

ᵀ
t xt
≤ G (cannot handle stocks crashing)

Our Progress (with Van der Hoeven, Koolen, Kot lowski)

I Have simple proposed algorithm with O(d2T 2) runtime:

minimize φt(w) =
∑t

s=1 fs(w)− λ
∑d

i=1 log(w
ᵀei )

I Using self-concordance techniques from interior point methods:

RegretuT = O

(
T∑
t=1

g2
t + d logT

)
,

where gt =
√
∇ft(wt)ᵀ∇−2φt(wt)∇ft(wt) measures gradient in local norm

I Local norms are always bounded and go to zero as we get more data

I This recovers O(d logT ) in special cases, and implies O((logT )d ) in general. . .
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Deep Neural Networks

Cat?

Dog?

Machine translation

Speech recognition

Self-driving cars

Class of non-convex functions parametrized by matrices
w = (A1, . . . ,Am):

hw(x) = Amσm−1Am−1 · · ·σ1A1x,

where σi (z) = max{0, z} applied component-wise to vectors.
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Deep Learning: the Big Question
Optimization

I Millions of images: too many to process all at once

I Process one image at a time using online learning algorithms:
I Online gradient descent (OGD)
I AdaGrad = OGD with separate ηt per dimension

High-dimensional Setting

I Still many more parameters than images (e.g. 25 times as many)

I Statistically obvious: we cannot estimate so many parameters unless
we add constraints (e.g. restrict to Lp ball)

I But even if you disable all standard regularization, it still works!
[Zhang,Bengio,Hardt,Recht,Vinyals,ICLR 2017]

I So how are the parameters restricted? By the behavior of the
optimization algorithm!

Big Question: Can we characterize subspace searched by optimization
methods (on realistic inputs) and prove it is small enough to generalize?
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Beyond Adversarial Thinking: A Modern View

Applications Are Not Zero-sum Games:

1. Worst-case regret witnessed on data where even best parameters
predict poorly. So no point in achieving small regret.

2. Nature is not trying to win (e.g. football teams do not fix results to
make statistical analysis hard)

Theorem (Van Erven, Koolen, 2016)

The MetaGrad algorithm guarantees the following data-dependent
bound:

RegretuT ≤
T∑
t=1

(wt − u)ᵀ∇ft(wt) 4


√
T ln lnT

√
Vu
T d lnT + d lnT

where

Vu
T =

T∑
t=1

((u−wt)
ᵀ∇ft(wt))2.
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Consequences

1. Non-stochastic adaptation:

Convex ft
√
T ln lnT

Exp-concave ft d lnT

Fixed convex ft = f d lnT

2. Stochastic without curvature
Suppose ft i.i.d. with stochastic optimum u∗ = arg minu∈W Ef [f (u)].

Then expected regret E[Regretu
∗

T ]:

Absolute loss* ft(w) = |w − Xt | lnT

Hinge loss max{0, 1− Yt〈w,Xt〉} d lnT

(B, β)-Bernstein (Bd lnT )1/(2−β) T (1−β)/(2−β)

*Conditions apply
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MetaGrad Football Experiments (Preliminary)
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