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Online Learning

● Decision problem
● Model: repeated game against an adversary
● Applications:

● spam detection
● data compression
● online convex optimization
● predicting electricity consumption
● predicting air pollution levels
● ...
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Repeated Game (Informally)

● Sequentially predict outcomes 
● Measure quality of prediction     by loss

● Before predicting    , get predictions (=advice) 
from     experts

● Goal: to predict as well as the best expert over 
    rounds.

● Data and Advice can be adversarial



  

Repeated Game

●  Every round                 :

1. Get expert predictions 

2. Predict  

3. Outcome     is revealed  

4. Measure nonnegative losses

● Goal: minimize regret



  

Repeated Game

●  Every round                 :

1. Get expert predictions 

2. Predict  

3. Outcome     is revealed  

4. Measure nonnegative losses

● Goal: minimize regret
Loss of the best expert
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Example: Spam Detection



  

Example: Spam Detection

● Labels:                  
● Predictions:
● 0/1-Loss:   

● Experts:    spam detection algorithms
● Regret: extra mistakes over best algorithm



  

Outline

● Online Learning
● Introduction
● Classification example
● What can we achieve?

● Bayesian Methods



  

A First Algorithm

● Suppose one of the spam detectors is perfect

● Keep track of experts without mistakes so far:

● Halving algorithm:

● Theorem:   regret 



  

A First Algorithm: Halving

Theorem:   regret 

● Does not grow with 

Proof:
● Suppose halving makes     mistakes, regret = 

● Every mistake eliminates at least half of    

●     is at most                                mistakes



  

No Assumptions?

● Consider two trivial spam detectors (experts):

● I could be wrong all the time:

Regret:
● Let    denote the number of ones in 
● Total loss best expert: 
● Linear regret = 



  

Solution

● Labels:                  
● Predict probability               that         
● Expected 0/1-loss = absolute loss:

● Achievable regret:
●           is standard in online learning
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Example: Data Compression

Big file

Small file

● Experts:    data compression algorithms
● Regret: extra number of bits over best algorithm



  

Reduction to Online Learning

Data compression: 
●                are characters in original big file
● Can encode     using                 bits, where

    is a probability distribution I need to chose 
before seeing

● Online learning:  
● Predict distribution     for  
● log loss:



  

Can We Guess the Regret?

●     data compression algorithms
● For data compression I could use a two-part 

code

1.          bits identifies the best algorithm

2. Concatenate with output of best algorithm

● Regret: 

● But in online learning I cannot split my output 
into two parts...



  

Bayes

● Experts define likelihoods: 

● Prior    on unknown parameter  



  

Bayes

● Experts define likelihoods: 

● Prior    on unknown parameter  

where                                                  is the 
posterior distribution

where                                                         is the 
posterior distribution on experts



  

Bayesian Regret

● Mix expert predictions according to their 
posterior probability

● Theorem: If    is the best expert, then the 
Bayesian regret for log loss is at most

● For uniform prior                  this is         ,         
as expected.

● This is optimal as                       



  

Bayesian Regret
Theorem: If    is the best expert, then the 
Bayesian regret for log loss is at most

Proof:
● Total loss:          

● Marginal likelihood                is bounded by

● Take negative logarithms

● Loss of best expert equals 
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How to Lie to Bayes

Log loss:
● Likelihoods    
● Loss is
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How to Lie to Bayes

Log loss:
● Likelihoods    
● Loss is

General loss (“exponential weights”): 
● Fix        . Fake likelihoods

● Log loss equals  

These are not 
probabilities!

But their values are in [0,1], 
so you cannot see that!



  

Mixability

If the loss is not log loss and predictions 
are not probabilities, then you cannot 
predict with the posterior distribution
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can find a prediction     that is at least as good:
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Mixability

If the loss is not log loss and predictions 
are not probabilities, then you cannot 
predict with the posterior distribution

I only need mixability...

A loss is   -mixable if, for any posterior distribution, we 
can find a prediction     that is at least as good:

distribution      



  

Mixable Losses

● Regret bounded by 
● For largest possible   this is optimal as 

Examples:
● Square loss is 2-mixable:

● Relative entropy loss is 1-mixable:

● Absolute loss is not   -mixable for any 

 



  

Mixable losses

Theorem 1: The Bayesian regret for log loss 
is at most

Theorem 2: The Bayesian regret for any          
  -mixable loss is at most

Proof by reduction to log loss:

≤ =



  

Log Loss is Special

● Reduction to log loss suggests that:

● New characterization of mixable losses 
captures in which way. [vE, Reid, Williamson, 2011]

“All mixable losses are like log loss in some way”
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Absolute Loss

● Labels:                  
● Predict probability               that         
● Expected 0/1-loss = absolute loss:



  

Absolute Loss

● Labels:                  
● Predict probability               that         
● Expected 0/1-loss = absolute loss:

● Not mixable...
● But can be approximated by an  -mixable loss 

up to approximation error    per round!



  

Bayes for Absolute Loss

Theorem: Bayes for absolute loss with             
                   has regret at most

Proof:
● If loss were mixable, the regret would be 

bounded by
● Approximation error:       per round
● Resulting bound: 
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Converging Posterior

● Approximation error    does not depend on the 
posterior distribution

● If the posterior distribution converges we can 
do better...



  

Converging Posterior

● Approximation error    does not depend on the 
posterior distribution

● If the posterior distribution converges we can 
do better...

Lemma: For         the approximation error is 
bounded by

for any     [vE, Grünwald, Koolen, De Rooij, 2011]  



  

Converging Posterior

● Can choose    such that the regret is bounded 
by:

1. If the posterior converges sufficiently fast:

2. Always, even if the posterior does not              
 converge:
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Summary

● Online Learning
● Repeated prediction game
● Examples: data compression, classification
● Want sublinear regret: constant or

● Bayesian Methods
● Generalization to mixable losses
● Generalization to classification
● Better classification when posterior converges 

quickly



  

Online Learning

Online Convex Optimization:
● Learn convex combinations of experts

Prediction with Expert Advice:
● Finite/countable number of experts



  

Online Learning

Online Convex Optimization:
● Learn convex combinations of experts

Prediction with Expert Advice:
● Finite/countable number of experts

Gradient trick: 
replace a convex 
loss by a linear 
approximation
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