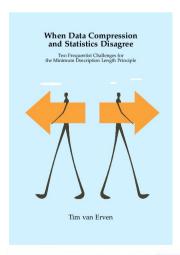
An Introduction to Online Learning for Bayesians

Tim van Erven

An Introduction to Online Learning for Bayesians

Tim van Erven



Online Learning

- Decision problem
- Model: repeated game against an adversary
- Applications:
 - spam detection
 - data compression
 - online convex optimization
 - predicting electricity consumption
 - predicting air pollution levels

•

Outline

- Online Learning
 - Introduction
 - Classification example
 - What can we achieve?
- Bayesian Methods

Repeated Game (Informally)

- Sequentially predict outcomes x_1, x_2, \ldots
- Measure quality of prediction a_t by loss $\ell(x_t, a_t)$

- Before predicting x_t , get predictions (=advice) from K experts
- Goal: to predict as well as the best expert over T rounds.

Data and Advice can be adversarial

Repeated Game

- Every round t = 1, 2, ...:
 - 1. Get expert predictions a_t^k (k = 1, ..., K)
 - 2. Predict a_t^*
 - 3. Outcome x_t is revealed
 - 4. Measure nonnegative losses $\ell(x_t, a_t^*), \ell(x_t, a_t^k)$

Goal: minimize regret

$$\sum_{t=1}^{T} \ell(x_t, a_t^*) - \min_{k} \sum_{t=1}^{T} \ell(x_t, a_t^k)$$

Repeated Game

- Every round $t = 1, 2, \dots$:
 - 1. Get expert predictions a_t^k (k = 1, ..., K)
 - 2. Predict a_t^*
 - 3. Outcome x_t is revealed
 - 4. Measure nonnegative losses $\ell(x_t, a_t^*), \ell(x_t, a_t^k)$

Loss of the best expert

Goal: minimize regret

$$\sum_{t=1}^{T} \ell(x_t, a_t^*) - \min_{k} \sum_{t=1}^{T} \ell(x_t, a_t^k)$$

Outline

- Online Learning
 - Introduction
 - Classification example
 - What can we achieve?
- Bayesian Methods

Example: Spam Detection

	Subject	From	
	■ Gratis Turkije	Reizen Center	$x_1 = 1$
L	■ uitnodiging hoorzitting reorganisatie FEW dinsdag 20	$x_2 = 0$	
	■ Re: Urgent Business Inquiry.	Ubc Ltd	$x_3 = 1$
	■ Reminder: first colloquium	Jeu, R.M.H. de	$x_4 = 0$
4	@ Informatie over VUnet	College van Bestuur	$x_5 = 0$
<u> </u>	■USD 500 Free Deposit at PartyPoker!	PartyPoker	$x_6 = 1$
ŵ	YOU ARE A WINNER!!! VERY URGENT NOTIFICATION.	UK INTL. LOTTERY PROMOTION	$x_7 = 1$
à	bachelor/master diploma uitreiking 14 september	Sotiriou, M.	$x_8 = 0$
M	HAPPY NEW YEAR 2068	Anil Shilpakar	$x_9 = 1$
â٦	Thailand Package	Anil Shilpakar	$x_{10} = 1$

Example: Spam Detection

- Labels: $x_t \in \{0, 1\}$
- Predictions: $a_t \in \{0, 1\}$ 0/1-Loss: $\ell(x_t, a_t) = \begin{cases} 0 & \text{if } a_t = x_t \\ 1 & \text{if } a_t \neq x_t \end{cases}$
- Experts: K spam detection algorithms
- Regret: extra mistakes over best algorithm

$$\sum_{t=1}^{T} \ell(x_t, a_t^*) - \min_{k} \sum_{t=1}^{T} \ell(x_t, a_t^k)$$

Outline

- Online Learning
 - Introduction
 - Classification example
 - What can we achieve?
- Bayesian Methods

A First Algorithm

Suppose one of the spam detectors is perfect

Keep track of experts without mistakes so far:

 $S_t = \{k \mid \text{expert } k \text{ made no mistakes before round t}\}$

Halving algorithm:

 $a_t^* = \text{majority vote among experts in } S_t$

• Theorem: $regret \leq \log_2 K$

A First Algorithm: Halving

Theorem: regret $\leq \log_2 K$

 $\bullet \ \ \mathsf{Does} \ \mathsf{not} \ \mathsf{grow} \ \mathsf{with} \ T$

Proof:

- Suppose halving makes m mistakes, regret = m-0
- Every mistake eliminates at least half of S_t
- m is at most $\log_2 |S_1| = \log_2 K$ mistakes

No Assumptions?

Consider two trivial spam detectors (experts):

$$a_t^1 = 0$$
 $a_t^2 = 1$

• I could be wrong all the time: $x_t \neq a_t^*$

Regret:

- Let n denote the number of ones in x_1, \ldots, x_T
- Total loss best expert: $L := \min\{n, T n\} \le T/2$
- Linear regret = $T L \ge T/2$

Solution

- Labels: $x_t \in \{0, 1\}$
- Predict probability $a_t \in [0,1]$ that $x_t = 1$
- Expected 0/1-loss = absolute loss:

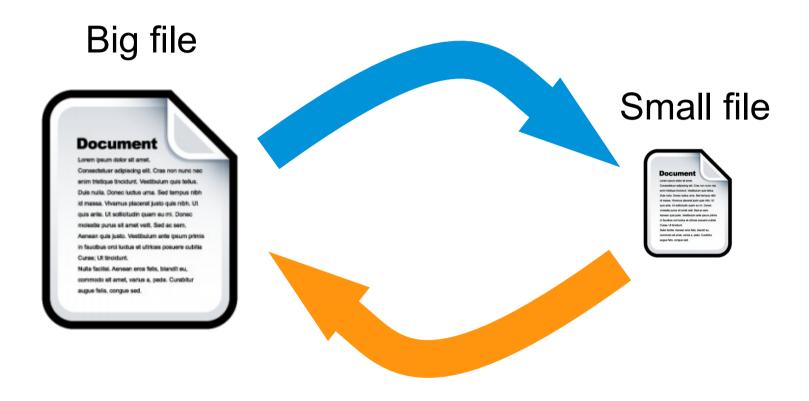
$$\ell(x_t, a_t) = |x_t - a_t|$$

- Achievable regret: $\sqrt{\frac{T}{2} \log K}$
- $O(\sqrt{T})$ is standard in online learning

Outline

- Online Learning
 - Introduction
 - Classification example
 - What can we achieve?
- Bayesian Methods
 - Data compression example
 - Mixable losses (or how to lie to Bayes)
 - Classification
 - When the posterior converges quickly...

Example: Data Compression



- Experts: K data compression algorithms
- Regret: extra number of bits over best algorithm

Reduction to Online Learning

Data compression:

- x_1, \ldots, x_T are characters in original big file
- Can encode x_t using $-\log P_t(x_t)$ bits, where P_t is a probability distribution I need to chose before seeing x_t

- Online learning:
- Predict distribution P_t for x_t
- log loss: $\ell(x_t, P_t) = -\log P_t(x_t)$

Can We Guess the Regret?

- K data compression algorithms
- For data compression I could use a two-part code
 - 1. $\log K$ bits identifies the best algorithm
 - 2. Concatenate with output of best algorithm
- Regret: $\log K$

 But in online learning I cannot split my output into two parts...

Bayes

Experts define likelihoods:

$$P(x_t \mid x_{1:(t-1)}, k) := P_t^k(x_t)$$

• Prior π on unknown parameter $k \in \{1, ..., K\}$

Bayes

Experts define likelihoods:

$$P(x_t \mid x_{1:(t-1)}, k) := P_t^k(x_t)$$

• Prior π on unknown parameter $k \in \{1, \ldots, K\}$

$$P^*(x_t|x_{1:(t-1)}) = \sum_k P(x_t|x_{1:(t-1)}, k)\pi(k|x_{1:(t-1)})$$

where $\pi(k \mid x_{1:(t-1)}) \propto P(x_{1:(t-1)} \mid k)\pi(k)$ is the posterior distribution on experts

Bayesian Regret

Mix expert predictions according to their posterior probability

• Theorem: If \hat{k} is the best expert, then the Bayesian regret for log loss is at most $-\log \pi(\hat{k})$

- For uniform prior $\pi(k) = 1/K$ this is $\log K$, as expected.
- This is optimal as $K, T \to \infty$

Bayesian Regret

Theorem: If \hat{k} is the best expert, then the Bayesian regret for log loss is at most $-\log \pi(\hat{k})$

Proof:

- Total loss: $\sum_{t=1}^{T} -\log P^*(x_t|x_{1:(t-1)}) = -\log P^*(x_{1:T})$
- Marginal likelihood $P^*(x_{1:T})$ is bounded by

$$P^*(x_{1:T}) = \sum_{k} P(x_{1:T} \mid k) \pi(k) \ge P(x_{1:T} \mid \hat{k}) \pi(\hat{k})$$

- Take negative logarithms
- Loss of best expert equals $-\log P(x_{1:T} \mid \hat{k})$

Outline

- Online Learning
 - Introduction
 - Classification example
 - What can we achieve?
- Bayesian Methods
 - Data compression example
 - Mixable losses (or how to lie to Bayes)
 - Classification
 - When the posterior converges quickly...

Log loss:

- Likelihoods $P(x_t|x_{1:(t-1)},k) = P_t^k(x_t) = e^{-\ell_{\log}(x_t,P_t^k)}$
- Loss is $\ell_{\log}(x_t, P_t) = -\log P_t(x_t)$

Log loss:

- Likelihoods $P(x_t|x_{1:(t-1)},k) = P_t^k(x_t) = e^{-\ell_{\log}(x_t,P_t^k)}$
- Loss is $\ell_{\log}(x_t, P_t) = -\log P_t(x_t)$

General loss ("exponential weights"):

• Fix $\eta > 0$. Fake likelihoods

$$P(x_t \mid x_{1:(t-1)}, k) = e^{-\eta \ell(x_t, a_t^k)}$$

• Log loss equals $-\log P(x_t|x_{1:(t-1)},k) = \eta \ell(x_t,a_t^k)$

Log loss:

- Likelihoods $P(x_t|x_{1:(t-1)},k) = P_t^k(x_t) = e^{-\ell_{\log}(x_t,P_t^k)}$
- Loss is $\ell_{\log}(x_t, P_t) = -\log P_t(x_t)$

These are not probabilities!

General loss ("expon

• Fix $\eta > 0$. Fake likelihoods

$$P(x_t \mid x_{1:(t-1)}, k) = e^{-\eta \ell(x_t, a_t^k)}$$

• Log loss equals $-\log P(x_t|x_{1:(t-1)},k) = \eta \ell(x_t,a_t^k)$

Log

SS:

Lik

 $ods P(x_t | x_{1:(t-1)}, k) = P_t^k(x_t) = e^{-\ell_{\log}(x_t, P_t^k)}$ $g(x_t, P_t) = -\log P_t(x_t)$

Lo

But their values are in [0,1], so you cannot see that!

These are not probabilities!

• Fix $\eta > 0$. Fake likelihoods

$$P(x_t \mid x_{1:(t-1)}, k) = e^{-\eta \ell(x_t, a_t^k)}$$

• Log loss equals $-\log P(x_t|x_{1:(t-1)},k) = \eta \ell(x_t,a_t^k)$

If the loss is not log loss and predictions are not probabilities, then you cannot predict with the posterior distribution

$$P^*(x_t|x_{1:(t-1)}) = \sum_k P(x_t|x_{1:(t-1)}, k)\pi(k|x_{1:(t-1)})$$

If the loss is not log loss and predictions are not probabilities, then you cannot predict with the posterior distribution

$$P^*(x_t|x_{1:(t-1)}) = \sum_k P(x_t|x_{1:(t-1)}, k)\pi(k|x_{1:(t-1)})$$

I only need mixability...

A loss is η -mixable if, for any posterior distribution, we can find a prediction a^* that is at least as good:

$$e^{-\eta \ell(x_t, a^*)} \ge P^*(x_t | x_{1:(t-1)})$$
 for any x_t

If the loss is not log loss and predictions are not probabilities, then you cannot predict with the posterior distribution

$$P^*(x_t|x_{1:(t-1)}) = \sum_k P(x_t|x_{1:(t-1)}, k)\pi(k|x_{1:(t-1)})$$

I only need mixability...

A loss is η -mixable if, for any posterior distribution, we can find a prediction a^* that is at least as good:

$$e^{-\eta \ell(x_t, a^*)} \ge \sum_k P(x_t | x_{1:(t-1)}, k) \pi(k | x_{1:(t-1)})$$
 for any x_t

If the loss is not log loss and predictions are not probabilities, then you cannot predict with the posterior distribution

$$P^*(x_t|x_{1:(t-1)}) = \sum_k P(x_t|x_{1:(t-1)}, k)\pi(k|x_{1:(t-1)})$$

I only need mixability...

A loss is η -mixable if, for any posterior distribution, we can find a prediction a^* that is at least as good:

$$e^{-\eta \ell(x_t, a^*)} \ge \sum_k e^{-\eta \ell(x_t, a_t^k)} \pi(k|x_{1:(t-1)})$$
 for any x_t

If the loss is not log loss and predictions are not probabilities, then you cannot predict with the posterior distribution

$$P^*(x_t|x_{1:(t-1)}) = \sum_k P(x_t|x_{1:(t-1)}, k)\pi(k|x_{1:(t-1)})$$

I only need mixability...

A loss is η -mixable if, for any distribution w(a), we can find a prediction a^* that is at least as good:

$$e^{-\eta\ell(x,a^*)} \ge \sum_a e^{-\eta\ell(x,a)} w(a)$$
 for any x

Mixable Losses

- Regret bounded by $\frac{-\log \pi(\hat{k})}{\eta}$
- For largest possible η this is optimal as $K, T \to \infty$

Examples:

Square loss is 2-mixable:

$$\ell(x_t, a_t) = (x_t - a_t)^2 \qquad x_t, a_t \in [0, 1]$$

Relative entropy loss is 1-mixable:

$$\ell(x_t, a_t) = x_t \log \frac{x_t}{a_t} + (1 - x_t) \log \frac{1 - x_t}{1 - a_t} \qquad x_t, a_t \in [0, 1]$$

• Absolute loss is **not** η -mixable for any $\eta > 0$

Mixable losses

Theorem 1: The Bayesian regret for log loss is at most $-\log \pi(\hat{k})$

Theorem 2: The Bayesian regret for any η -mixable loss is at most $\frac{-\log \pi(\hat{k})}{\eta}$

Proof by reduction to log loss:

$$\sum_{t=1}^{T} \eta \ell(x_t, a_t^*) - \min_{k} \sum_{t=1}^{T} \eta \ell(x_t, a_t^{\hat{k}}) \leq \sum_{t=1}^{T} \ell_{\log}(x_t, P(\cdot | a_t^*)) - \min_{k} \sum_{t=1}^{T} \ell_{\log}(x_t, P_t(\cdot | a_t^k)) \leq -\log \pi(\hat{k})$$

Log Loss is Special

Reduction to log loss suggests that:

"All mixable losses are like log loss in some way"

 New characterization of mixable losses captures in which way. [vE, Reid, Williamson, 2011]

Outline

- Online Learning
 - Introduction
 - Classification example
 - What can we achieve?
- Bayesian Methods
 - Data compression example
 - Mixable losses (or how to lie to Bayes)
 - Classification
 - When the posterior converges quickly...

Absolute Loss

- Labels: $x_t \in \{0, 1\}$
- Predict probability $a_t \in [0,1]$ that $x_t = 1$
- Expected 0/1-loss = absolute loss:

$$\ell(x_t, a_t) = |x_t - a_t|$$

Absolute Loss

- Labels: $x_t \in \{0, 1\}$
- Predict probability $a_t \in [0,1]$ that $x_t = 1$
- Expected 0/1-loss = absolute loss:

$$\ell(x_t, a_t) = |x_t - a_t|$$

- Not mixable...
- But can be approximated by an η -mixable loss up to approximation error $\frac{\eta}{8}$ per round!

Bayes for Absolute Loss

Theorem: Bayes for absolute loss with
$$\eta = \sqrt{\frac{8 \log K}{T}}$$
 has regret at most $\sqrt{\frac{T}{2} \log K}$

Proof:

- If loss were mixable, the regret would be bounded by $\frac{\log K}{\eta}$
- Approximation error: $\eta/8$ per round
- Resulting bound: $\frac{\log K}{\eta} + \frac{\eta T}{8}$

Outline

- Online Learning
 - Introduction
 - Classification example
 - What can we achieve?
- Bayesian Methods
 - Data compression example
 - Mixable losses (or how to lie to Bayes)
 - Classification
 - When the posterior converges quickly...

Converging Posterior

- Approximation error $\frac{\eta}{8}$ does not depend on the posterior distribution
- If the posterior distribution converges we can do better...

Converging Posterior

- Approximation error $\frac{\eta}{8}$ does not depend on the posterior distribution
- If the posterior distribution converges we can do better...

Lemma: For $\eta \le 1$ the approximation error is bounded by

$$(e-2)\eta(1-\pi(k\mid x_{1:(t-1)}))$$

for any k [vE, Grünwald, Koolen, De Rooij, 2011]

Converging Posterior

 Can choose η such that the regret is bounded by:

1. If the posterior converges sufficiently fast:

2. Always, even if the posterior does not converge:

$$O(\sqrt{T\log K})$$

Outline

- Online Learning
 - Introduction
 - Classification example
 - What can we achieve?
- Bayesian Methods
 - Data compression example
 - Mixable losses (or how to lie to Bayes)
 - Classification
 - When the posterior converges quickly...

Summary

- Online Learning
 - Repeated prediction game
 - Examples: data compression, classification
 - Want sublinear regret: constant or $O(\sqrt{T})$
- Bayesian Methods
 - Generalization to mixable losses
 - Generalization to classification
 - Better classification when posterior converges quickly

Online Learning

Prediction with Expert Advice:

• Finite/countable number of experts

Online Convex Optimization:

Learn convex combinations of experts

Online Learning

Prediction with Expert Advice:

Finite/countable number of experts

Gradient trick:

replace a convex loss by a linear approximation

Online Convex Optimization:

Learn convex combinations of experts

References

Standard textbook:

Cesa-Bianchi and Lugosi. Prediction, learning, and games. 2006.

Course slides by Peter Bartlett:

http://www.stat.berkeley.edu/~bartlett/talks/BeijingCourse2010.html

- Van Erven, Reid and Williamson. Mixability is Bayes Risk Curvature Relative to Log Loss. COLT 2011.
- Van Erven, Grünwald, Koolen and De Rooij. Adaptive Hedge. NIPS 2011.
- De Rooij, Van Erven, Grünwald, Koolen. Follow the Leader If You Can, Hedge If You Must. Submitted, 2013.