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Online Learning

» Decision problem
» Model: repeated game against an
» Applications:

e spam detection

e data compression

e online convex optimization

* predicting electricity consumption
« predicting air pollution levels
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Repeated Game (Informally)

Sequentially predict outcomes =1, zo, ...
Measure quality of prediction a: by loss ¢(x¢, a¢)

Before predicting z:, get predictions (=advice)
from K experts

Goal: to predict as well as the best expert over
T rounds.

Data and Advice can be




Repeated Game

 Everyroundit=1,2,...:

1. Get expert predictions af (k=1,...,K)
2. Predict a;

3. Outcome z; is revealed

- k
4. Measure nonnegative losses {(x;, a; ), {(x¢, a;)

* Goal: minimize

T T
;ﬁ(azt, ay) — mkintz_;ﬁ(xt, af)
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Repeated Game

 Everyroundit=1,2,...:
1. Get expert predictions af (k=1,...,K)
2. Predict a;

3. Outcome z; is revealed

- k
4. Measure nonnegative losses {(x;, a; ), {(x¢, a;)

. Loss of the best expert
» Goal: minimize

T T
> tatsaf) = min 3 v, af)
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Example: Spam Detection

Subject From
= Gratis Turkije. . . Reizen Center X1
=Uitnodiging hoorzitting reorganisatie FEW dinsdag 20 se... Ivo van Stokkum L9
= Re: Urgent Business Inquiry. Ubc Ltd XT3
& Reminder: first colloquium Jeu, R.M.H. de L4
@ Informatie over VUnet College van Bestuur Ty
@USD 500 Free Deposit at PartyPoker! PartyPoker L6
@ YOU ARE A WINNER!!! VERY URGENT NOTIFICATION. UK INTL. LOTTERY PROMOTION X7
é bachelor/master diploma uitreiking 14 september Sotiriou, M. T8
@ HAPPY NEW YEAR 2068 Anil Shilpakar X9

é Thailand Package Anil Shilpakar L10

—_ PO, R OO R O~




Example: Spam Detection

Labels: z € {0,1}
Predictions: a; € {0,1}
0 ifar=2x
0/1-Loss: — b=t
é(xta at) < 1 if a¢ # Lt

\

Experts: K spam detection algorithms
Regret: extra mistakes over best algorithm

T T
;aaxt, ay) — mkin;a:ct, af)
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A First Algorithm

» Suppose one of the spam detectors is

» Keep track of experts without mistakes so far:

St = {k | expert k£ made no mistakes before round t}

- Halving algorithm:

a; = majority vote among experts in 5

. regret < log, K




A First Algorithm: Halving

regret <log, K

oo
Does not grow with T g

Proof:

Suppose halving makes m mistakes, regret =m — 0

Every mistake eliminates at least half of S}

mis at most log, |S1| = log, K mistakes

\\_— ——— = e A
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No Assumptions?

» Consider two trivial spam detectors (experts):
! a% =0 af =1

» | could be wrong all the time: z;: # a;

Regret:
» Let n denote the number ofones inzy,...,z7
- Total loss best expert: L := min{n, T —n} < T/2

. regret=T7—L>T)/2
-




N

Solution

» Labels: z, € {0,1}
 Predict probability a; € [0,1] that z; = 1
» Expected 0/1-loss = absolute loss:

€<$t,a,t) — ’ZEt — CLt’

» Achievable regret:\/% log K
» O(v/T)is standard in online learning
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Example: Data Compression

Big file

Small file

» Experts: K data compression algorithms
» Regret: extra number of bits over best algorithm




Reduction to Online Learning

z1,...,x7 are characters in original big file

Can encode z; using — log P;(x;) bits, where
P, 1s a probability distribution | need to chose
before seeing z;

Predict distribution p, for x;
|Og IOSS g(.ﬁlﬁu Pt) = — log Pt(ﬂft)




Can We Guess the Regret?

K data compression algorithms

For data compression | could use a two-part
code

log K bits identifies the best algorithm
Concatenate with output of best algorithm

Regret: log K

But in online learning | cannot split my output
into two parts...




Bayes

« Experts define likelihoods:
P(xy | ﬂflz(t—l)ak) - = Ptk(ﬂﬁt)

* Prior m on unknown parameter k c {1,..., K}




Bayes

» Experts define likelihoods:
P(xy | 33‘1:(t—1)ak) - = Ptk(ﬂi't)

* Prior mon unknown parameter k € {1,..., K}

_—

where 7T(k' ‘ 331:(15—1)) X P($1:(t_1) ‘ ]C)’]T(k') IS the
\posterior distribution on experts

N

P*(let\ﬂﬁ:(t—l)) — ZP(%‘%:@—U? k)ﬂ(k\ﬂfh(t—n)
k

/




Bayesian Regret

Mix expert predictions according to their
posterior probability

If & is the best expert, then the
Bayesian regret for log loss is at most — log (k)

For uniform prior«(k) = 1/K this is log K,
as expected.

This is optimal as K, T — ~

— e -




Bayesian Regret

If & is the best expert, then the
Bayesian regret for log loss is at most — log 7 (k)

Proof:
Total loss:>",_, — log P*(x¢|r1.(4—1)) = — log P*(x1.7)

Marginal likelihood P*(z1.7) is bounded by

*(z1.7) ZP vt | K)w(k) > Playr | B)r(k)

Take negative Iogarlthms

Loss of best expert equals — log P(x1.7 | l%)
\\____ — R RN — S s S,
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How to Lie to Bayes

Log loss:

» Likelihoods P(x|z1.;_ 1), k) = PF(z,) = o~ log (x4, Py)
* Loss IS liog (x4, Pr) = — log Py(x4)




How to Lie to Bayes

Log loss:
O LikelihOOdS P(xt‘xl:(t—1)7 k‘) — Ptk(mt) — 6—£10g(ﬂ3t,Ptk)
* Loss IS liog (x4, Pr) = — log Py(x4)

General loss (‘exponential weights™):
* Fixn > 0. Fake likelihoods

P(:Ut ‘ xl:(t—l)j ]f) — e_ne(xt,af)

* Log loss equals —log P(z¢|x1.(+—1), k) = nl(z, af)

=== Sm——.




Log loss:
 Likelihoods P(azt\azlz(t_l), k)= Ptk(
* Loss IS liog (x4, Pr) = — log Py(x4)

n[ These are notj
General loss (‘expo probabilities!

* Fixn > 0. Fake likelihoods

P(:Ut ‘ xl:(t—l)j ]f) — e_ne(xt,af)

* Log loss equals —log P(z¢|x1.(+—1), k) = nl(z, af)

———— e —




These are not
probabillities!

But their values are in [0,1],

SO you cannot see that!
N— __~

* Fixn > 0. Fake likelihoods

P(:Ut ‘ xl:(t—l)j ]f) — e_ne(xt,af)

* Log loss equals —log P(z¢|x1.(+—1), k) = nl(z, af)



Mixability

" If the loss is not log loss and predictions
are not probabilities, then you cannot

predict with the posterior distribution

\P*(l't‘l'l:(t—l)) = Zk P(iUt‘l'l:(t—l); k)ﬂ-(kkvl:(t—%




Mixability

" Ilth

are npt probabilities, then you cannot
redigt with the posterior distribution

loss Is not log loss and predictions

\P*(ﬂi‘t\ﬂﬁ-(t—l)) = 2k Pz e-1), k)’”(k‘wl%t—%

| only need mixability... |

A loss is n-mixable if, for any posterior distribution, we
can find a prediction ¢ that is at least as good:

M) > P (3|3 yy)  for any o

i - —_—




Mixability

" Ilth

are npt probabilities, then you cannot
redigt with the posterior distribution

loss Is not log loss and predictions

\P*(ﬂi‘t\ﬂﬁ-(t—l)) = 2k Pz e-1), k)’”(k‘wl%t—%

| only need mixability... |

A loss is n-mixable if, for any posterior distribution, we
can find a prediction ¢ that is at least as good:

e~ MHwnaT) > 3 P(a|ey -1y, k)w(kley.g—1))  for any




Mixability

" Ilth

are npt probabilities, then you cannot
redigt with the posterior distribution

loss Is not log loss and predictions

\P*(ﬂi‘t\ﬂﬁ-(t—l)) = 2k Pz e-1), k)’”(k‘wl%t—%

| only need mixability... |

A loss is n-mixable if, for any posterior distribution, we
can find a prediction ¢ that is at least as good:

e~ Mweat) > S5 e_ng(mt’af)ﬂ(k\ﬂfl:(t—l)) for any x

- .




loss Is not log loss and predictions
aﬁre ot probabilities, then you cannot

[ 1 only need mixability... ]

Aloss is n-mixable if, forany  distribution w(a) , we
can find a prediction ¢ that is at least as good:

et @aT) > N e nt@a)y(q) for any x

e ——




Mixable Losses

* Regret bounded by —'er("
* For largest possible n this is optimal as K, 7" — oo

Examples:
« Square loss is 2-mixable:
Uy, a1) = (26 — ag)? xe,ar € [0, 1]
» Relative entropy loss is 1-mixable:
Uz, a) = o logz—z + (1 — x¢) log 1 : Z xy,a¢ € |0, 1]

Absolute loss is not n-mixable for any n > 0

— e -
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Mixable losses

The Bayesian regret for log loss
Is at most — log 7 (k)

The Bayesian regret for any
n-mixable loss is at most — log 7(k)

Uy

| Proof by reduction to log loss:
an(xta a;) — m}gnan(xt,af) <

T
Z&Og ajta ‘a’t mkinzglog(xhpt("af)) S _logﬂ-(k)

t=1

\__-_______ —




Log Loss is Special

» Reduction to log loss suggests that:
“All mixable losses are like log loss

» New characterization of mixable losses
captures in which way. [vE, Reid, Williamson, 2011]

n
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Absolute Loss

» Labels: z, € {0,1}
 Predict probability a; € [0,1] that z; = 1
» Expected 0/1-loss = absolute loss:

g(.ﬁl%,(ﬁg) — ‘ZEt — a,t]




Absolute Loss

Labels: 2, € {0,1}
Predict probability a; € [0,1] that z; = 1
Expected 0/1-loss = absolute loss:

€($t7at) — ‘.CUt — CLt‘

Not mixable...

But can be approximated by ann-mixable loss
up to approximation error £ per round!
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Bayes for Absolute Loss

Bayes for absolute loss with
n— \/SIO;K has regret at most \/g log K

Proof:

» If loss were mixable, the regret would be
| bounded by &£

n
» Approximation error: /8 per round

 Resulting bound: logk 7T

N 8
N— —
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Converging Posterior

* Approximation error Z does not depend on the
posterior distribution

» If the posterior distribution converges we can
do better...




Converging Posterior

* Approximation error Z does not depend on the
posterior distribution

» If the posterior distribution converges we can
do better...

Forn < 1the approximation error is
bounded by

(e — 2)77(1 — (k| 513'1:(t—1)))
for any k [VE, Griinwald, Koolen, De Rooij, 2011]




Converging Posterior

» Can choose 7 such that the regret is bounded
by:

1. If the posterior converges sufficiently fast:
O(K)

2. Always, even if the posterior does not
converge:

O(+v/T log K)
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Summary

Online Learning

* Repeated prediction game
 Examples: data compression, classification
» Want sublinear regret: constant or O(v/T)

Bayesian Methods

 Generalization to mixable losses
 Generalization to classification

» Better classification when posterior converges
quickly




Online Learning

Prediction with Expert Advice:

* Finite/countable number of experts

Online Convex Optimization:
* | earn convex combinations of experts




Online Learning

Prediction with Expert Advice:

* Finite/countable number of experts Gradient trick:

replace a convex
loss by a linear
approximation

Online Convex Optimization:
* | earn convex combinations of experts
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