WIC Wintermeeting, February 1, 2016

From Data Compression to Online Machine Learning

Tim van Erven

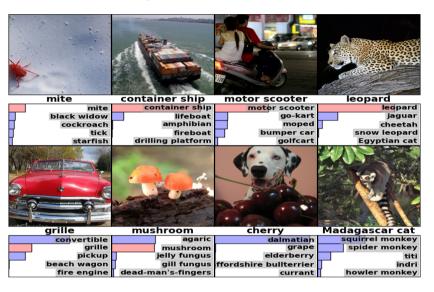
Based on joint work with: Wouter Koolen, Peter Grünwald

Outline

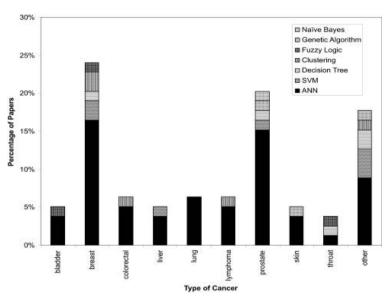
- The end: online convex optimization for machine learning
- The beginning: data compression and universal coding via sequential predictions
- Sequential predictions for general losses
- Online Convex Optimization

Machine Learning Examples

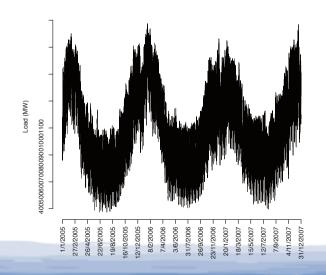
Image Classification



Cancer Research



Forecasting Electricity Consumption



E-mail Spam Detection

Machine Learning

$$ullet$$
 Training data: $egin{pmatrix} Y_1 \ X_1 \end{pmatrix}, \dots, egin{pmatrix} Y_n \ X_n \end{pmatrix}$ input vector

• Many parameters: $\boldsymbol{v} = (v^1, \dots, v^d)$

Optimize performance on training data:

$$\min_{\boldsymbol{v}} f_1(\boldsymbol{v}) + \ldots + f_n(\boldsymbol{v})$$

where f_t measures the loss/error on $egin{pmatrix} Y_t \ X_t \end{pmatrix}$

e.g. logistic loss: $f_t(\mathbf{v}) = \log(1 + e^{-Y_t \langle \mathbf{v}, \mathbf{X}_t \rangle})$

Machine Learning

Traini

Problems for big data:

- Many
- Data does not fit in memory at once
- Want to update fast on extra data

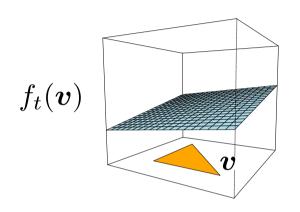
Optimize perform on training data:

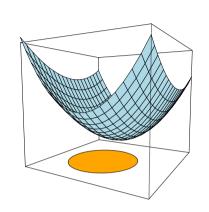
$$\min_{\boldsymbol{v}} \quad f_1(\boldsymbol{v}) + \ldots + f_n(\boldsymbol{v})$$

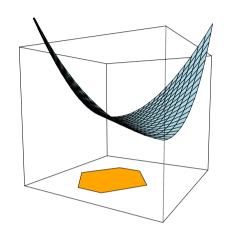
where f_t measures the loss/error on

e.g. logistic loss: $f_t(\mathbf{v}) = \log(1 + e^{-Y_t \langle \mathbf{v}, \mathbf{X}_t \rangle})$

Online Convex Optimization





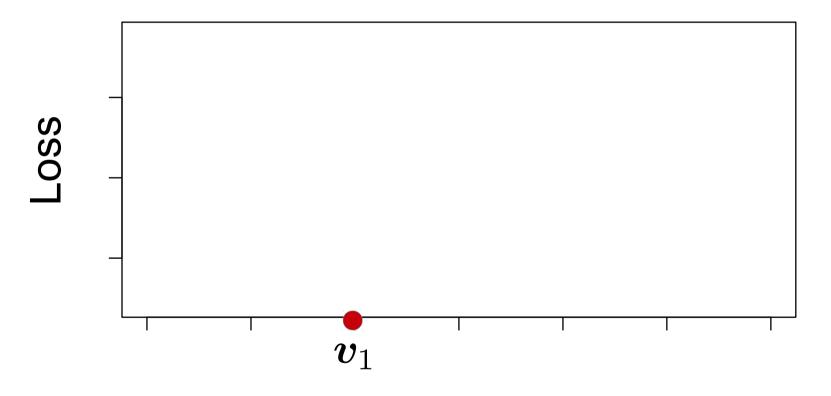


- Convex functions $f_1(v), \ldots, f_n(v)$
- Process data sequentially:

Continuously improve parameters v by looking at one function f_t at a time

Online Gradient Descent

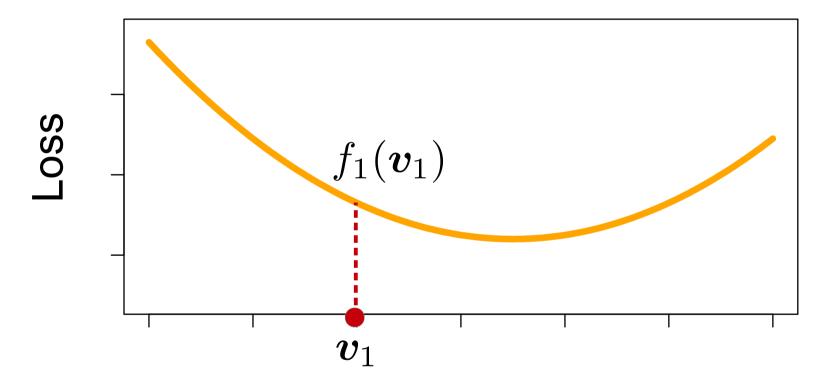
Initialize parameters



Parameters *v*

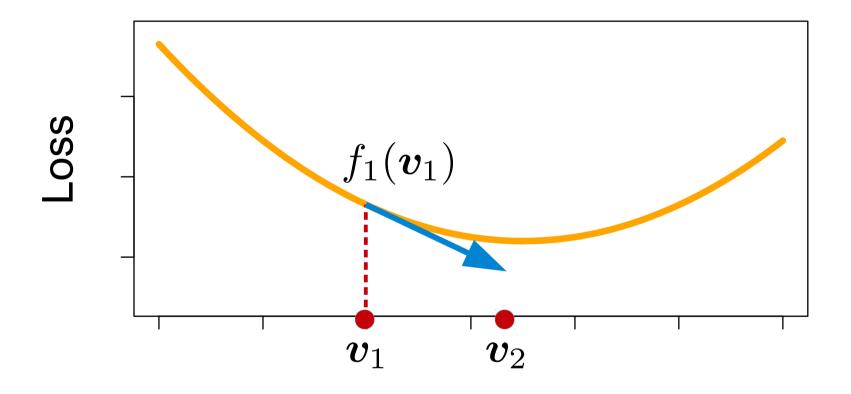
Online Gradient Descent

Round 1



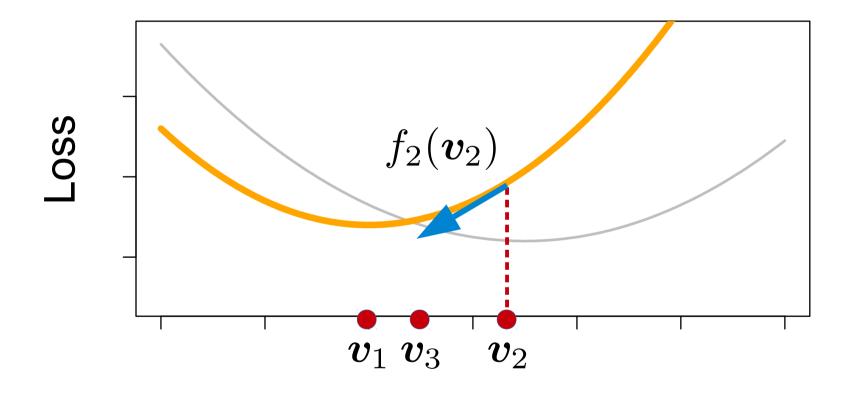
Parameters *v*

Online Gradient Descent Round 1



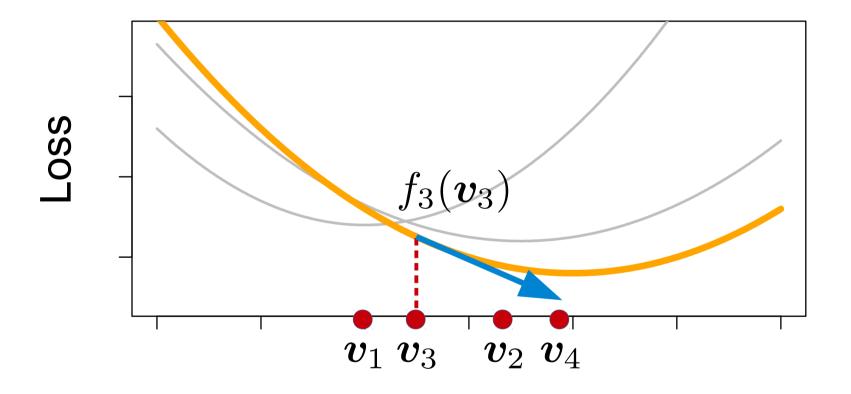
Move in direction of steepest descent (step size controlled by parameter η)

Online Gradient Descent Round 2



Move in direction of steepest descent (step size controlled by parameter η)

Online Gradient Descent Round 3



Move in direction of steepest descent (step size controlled by parameter η)

What does this have to do with information theory?

Outline

- The end: online convex optimization for machine learning
- The beginning: data compression and universal coding via sequential predictions
- Sequential predictions for general losses
- Online Convex Optimization

Data Compression via Sequential Prediction

- Data: X_1, \ldots, X_n
- Encode in sequential pass through the data
- For t = 1, ..., n:
 - Predict X_t by distribution \hat{P}_t
 - Encode X_t with $-\log \hat{P}_t(X_t)$ bits
- \hat{P}_t depends only on previous data X_1,\ldots,X_{t-1}
- Efficient algorithm: arithmetic coding

Universal Coding

- Suppose we have K prediction strategies/codes P_t^1, \ldots, P_t^K
- How to predict/code (nearly) as well as the best one?

Regret = our codelength – codelength of best

$$= \sum_{t=1}^{n} -\log \hat{P}_t(X_t) - \min_{k} \sum_{t=1}^{n} -\log P_t^k(X_t)$$

Bayesian Predictions for Universal Coding

- Start with uniform prior distribution $w_1(k) = \frac{1}{K}$ on K prediction strategies
- Predict with Bayes predictive distribution, which mixes strategies

$$\hat{P}_t(X_t) = \Pr(X_t | X_1, \dots, X_{t-1}) = \sum_{k=1}^K w_t(k) P_t^k(X_t)$$

according to posterior probabilities

$$w_t(k) = \frac{w_1(k) \prod_{s=1}^{t-1} P_s^k(X_s)}{\text{normalization}}$$

Regret Bound for Bayesian Predictions

Regret = our codelength – codelength of best

$$= \sum_{t=1}^{n} -\log \hat{P}_{t}(X_{t}) - \min_{k} \sum_{t=1}^{n} -\log P_{t}^{k}(X_{t})$$

$$\leq \log K$$

• **Proof**: let k^* be the best strategy. Then our predictions satisfy

$$\prod_{t=1}^{n} \hat{P}_{t}(X_{t}) = \prod_{t=1}^{n} \Pr(X_{t}|X_{1}, \dots, X_{t-1}) = \Pr(X_{1:n})$$

$$= \sum_{k=1}^{n} w_{1}(k) \Pr(X_{1:n}|k) \ge w_{1}(k^{*}) \Pr(X_{1:n}|k^{*}) = \frac{1}{K} \prod_{t=1}^{n} P_{t}^{k^{*}}(X_{t})$$

Outline

- The end: online convex optimization for machine learning
- The beginning: data compression and universal coding via sequential predictions
- Sequential predictions for general losses:
 - Log loss = data compression
 - Exp-concave losses
 - Linear loss
- Online Convex Optimization

Sequential Prediction for General Losses

- Suppose we have K prediction strategies that make predictions p_t^1, \ldots, p_t^K in round t
- Do not have to be probabilities

- For t = 1, ..., n:
 - Predict \hat{p}_t
 - $-\log_t(p)$ measures loss of p on outcome X_t

• Regret =
$$\sum_{t=1}^{n} loss_t(\hat{p}_t) - \min_k \sum_{t=1}^{n} loss_t(p_t^k)$$

Sequential Prediction for General Losses

- Suppo make
- **Data compression:**
- Predictions are prob. distributions
- $loss_t(p) = -log p(X_t)$ is log loss
- Do no
 - **Regression:**
 - Predictions are numbers
 - $loss_t(p) = (X_t p)^2$ is squared error
- For t = 1, ...
 - Predict \hat{p}_t
 - $-\log_t(p)$ measures loss of p on outcome X_t

• Regret =
$$\sum_{t=1}^{n} loss_t(\hat{p}_t) - \min_k \sum_{t=1}^{n} loss_t(p_t^k)$$

t

Outline

- The end: online convex optimization for machine learning
- The beginning: data compression and universal coding via sequential predictions
- Sequential predictions for general losses:
 - Log loss = data compression
 - Exp-concave losses
 - Linear loss
- Online Convex Optimization

Exp-concave Losses

Losses such that

$$e^{-\eta \log_t(p)}$$

is concave in our prediction p for some $\eta > 0$

- Log loss: $e^{-\log_t(p)} = p(X_t)$
 - linear in p for $\eta = 1$
- Squared error: $e^{-\eta(X_t-p)^2}$

$$-\eta = \frac{1}{8} \text{ if } X_t, p \in [-1, +1]$$

Exp-concave Losses

Losses such that

Behaves much like a probability

$$e^{-\eta \log_t(p)}$$

is concave in our prediction p for some $\eta > 0$

- Log loss: $e^{-\log_t(p)} = p(X_t)$
 - linear in p for $\eta = 1$
- Squared error: $e^{-\eta(X_t-p)^2}$

$$-\eta = \frac{1}{8} \text{ if } X_t, p \in [-1, +1]$$

Exp-concavity allows mixing "probabilities"

• If we mix predictions according to some weights: $_{\kappa}$

$$\hat{p}_t = \sum_{k=1}^K w_t(k) p_t^k$$

 Then our "probability" is at least the mixture of the "probabilities" we are mixing:

$$e^{-\eta \log_t(\hat{p}_t)} \ge \sum_{k=1}^K w_t(k) e^{-\eta \log_t(p_t^k)}$$

Exponential Weights Predictions

Predict with Bayesian predictions, which mix strategies

$$\hat{p}_t = \sum_{k=1}^K w_t(k) p_t^k$$

according to posterior weights

$$w_t(k) = \frac{w_1(k) \prod_{s=1}^{t-1} \mathbf{p_s^k(X_s)}}{\text{normalization}}$$

Exponential Weights Predictions

Predict with Bayesian predictions, which mix strategies

$$\hat{p}_t = \sum_{k=1}^K w_t(k) p_t^k$$

according to posterior weights

$$w_t(k) = \frac{w_1(k) \prod_{s=1}^{t-1} e^{-\eta \log_s(p_s^k)}}{\text{normalization}}$$

Regret for Exp-Concave Losses

Regret = our total loss – loss of best strategy

$$= \sum_{t=1}^{n} loss_{t}(\hat{p}_{t}) - \min_{k} \sum_{t=1}^{n} loss_{t}(p_{t}^{k})$$

$$\leq \frac{\log K}{\eta}$$

Proof: same steps as for log loss give

$$\sum_{t=1}^{n} \eta \operatorname{loss}_{t}(\hat{p}_{t}) \leq \sum_{t=1}^{n} \eta \operatorname{loss}_{t}(p_{t}^{k^{*}}) + \log K$$

Outline

- The end: online convex optimization for machine learning
- The beginning: data compression and universal coding via sequential predictions
- Sequential predictions for general losses:
 - Log loss = data compression
 - Exp-concave losses
 - Linear loss
- Online Convex Optimization

Linear Loss

Predict with a mix of K prediction strategies:

$$\hat{p}_t = \sum_{k=1}^K w_t(k) p_t^k$$

Loss is linear in the mixing weights:

$$loss_t(\boldsymbol{w}_t) = \sum_{k=1}^{K} w_t(k) \ell_t^k$$

where ℓ_t^k is the loss of using strategy k (can be anything)

Example: strategies classify emails as spam or not spam

$$\ell_t^k = \begin{cases} 1 & \text{if strategy k makes mistake on t-th e-mail,} \\ 0 & \text{otherwise} \end{cases}$$

Regret for Linear Loss

- Can approximate linear loss by an exp-concave loss $m_t(\boldsymbol{w})$ with parameter η
- Approximation error: $\eta/8$ per round (if $\ell_t^k \in [0,1]$)
- Exponential weights algorithm with $\eta = \sqrt{\frac{8 \log(K)}{n}}$ achieves

Regret
$$\leq \frac{\log K}{\eta} + \frac{n\eta}{8} = \sqrt{n\log(K)/2}$$

Outline

- The end: online convex optimization for machine learning
- The beginning: data compression and universal coding via sequential predictions
- Sequential predictions for general losses
- Online Convex Optimization
 - Linear optimization
 - Convex optimization

Online Linear Optimization

- Linear loss with an infinite number of comparison strategies ${m v} \in \mathbb{R}^d$
- Loss of v in round t is

$$\ell_t^{\boldsymbol{v}} = \langle \boldsymbol{v}, \boldsymbol{c}_t \rangle$$
 for some costs $\boldsymbol{c}_t \in \mathbb{R}^d$

• Our loss with weights $w_t(\boldsymbol{v})$ is

$$loss_t(w_t) = \langle \boldsymbol{\mu}_t, \boldsymbol{c}_t \rangle$$

where $\boldsymbol{\mu}_t = \mathbb{E}_{w_t(\boldsymbol{v})}[\boldsymbol{v}]$ is the mean of w_t

Exponential Weights

Exponential weights with Gaussian prior

$$w_1 = \mathcal{N}(0, I)$$

gives Gaussian posterior weights

$$w_t(\mathbf{v}) = \frac{w_1(\mathbf{v}) \prod_{s=1}^{t-1} e^{-\eta \langle \mathbf{v}, \mathbf{c}_s \rangle}}{\text{normalization}} = \mathcal{N}(\boldsymbol{\mu}_t, I)$$

with mean

$$\boldsymbol{\mu}_t = -\eta \sum_{s=1}^{t-1} \boldsymbol{c}_s$$

Regret for Linear Optimization

• Thm: If $||c_t|| \le 1$ for all t. Then the regret of exponential weights with

$$\eta = \sqrt{\frac{B^2}{n}}$$

with respect to all v s.t. $||v|| \le B$ is at most

Regret
$$\leq \sqrt{2B^2n}$$

Essentially same analysis as for finite number of comparison strategies

Outline

- The end: online convex optimization for machine learning
- The beginning: data compression and universal coding via sequential predictions
- Sequential predictions for general losses
- Online Convex Optimization
 - Linear optimization
 - Convex optimization

Machine Learning

$$ullet$$
 Training data: $egin{pmatrix} Y_1 \ X_1 \end{pmatrix}, \dots, egin{pmatrix} Y_n \ X_n \end{pmatrix}$ input vector

• Many parameters: $\boldsymbol{v} = (v^1, \dots, v^d)$

Optimize performance on training data:

$$\min_{\boldsymbol{v}} f_1(\boldsymbol{v}) + \ldots + f_n(\boldsymbol{v})$$

where f_t measures the loss/error on $egin{pmatrix} Y_t \ X_t \end{pmatrix}$

e.g. logistic loss: $f_t(\mathbf{v}) = \log(1 + e^{-Y_t \langle \mathbf{v}, \mathbf{X}_t \rangle})$

Online Convex Optimization

 $oldsymbol{v} \in \mathbb{R}^d ext{ in round t is}$

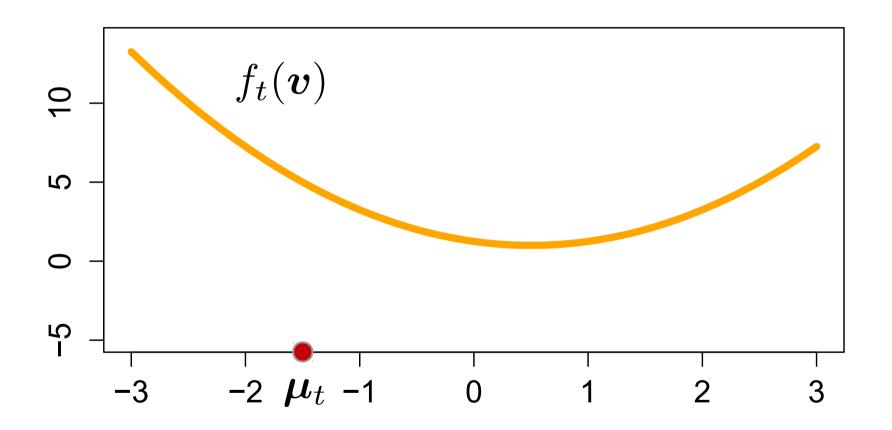
$$\ell_t^{\boldsymbol{v}} = f_t(\boldsymbol{v})$$
 for convex f_t

• Our loss with weights $w_t({m v})$ is

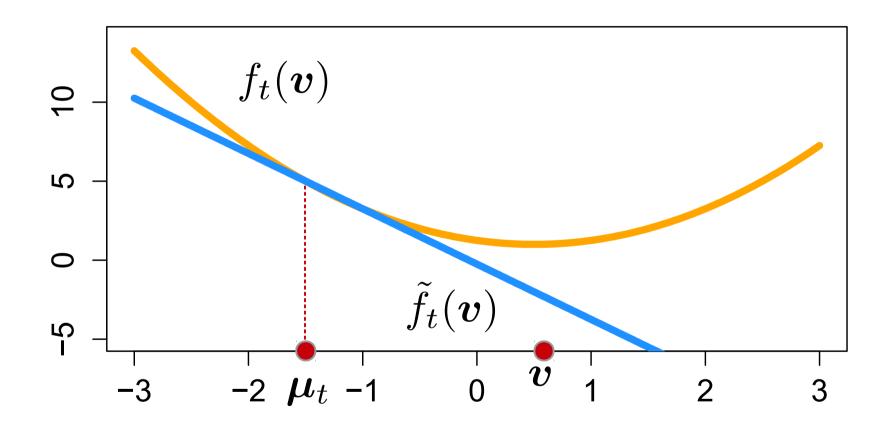
$$loss_t(w_t) = f_t(\boldsymbol{\mu}_t)$$

• Regret =
$$\sum_{t=1}^{n} f_t(\boldsymbol{\mu}_t) - \min_{\boldsymbol{v}} \sum_{t=1}^{n} f_t(\boldsymbol{v})$$

Reduction to Linear Optimization



Reduction to Linear Optimization



Approximate convex orange by linear blue

$$\tilde{f}_t(\boldsymbol{v}) = f_t(\boldsymbol{\mu}_t) + \langle (\boldsymbol{v} - \boldsymbol{\mu}_t), \nabla f_t(\boldsymbol{\mu}_t) \rangle$$

Exponential Weights becomes Gradient Descent

Effect of linear approximation:

$$oldsymbol{c}_t =
abla f_t(oldsymbol{\mu}_t)$$

Mean of exponential weights becomes

$$\mu_t = -\eta \sum_{s=1}^{t-1} \nabla f_s(\mu_s) = \mu_{t-1} - \eta \nabla f_{t-1}(\mu_{t-1})$$

which is exactly gradient descent!

Regret for Convex Optimization

• Thm: If $\|\nabla f_t(\boldsymbol{\mu}_t)\| \le 1$ for all t. Then the regret of exponential weights = gradient descent with

$$\eta = \sqrt{\frac{B^2}{n}}$$

with respect to all v s.t. $||v|| \le B$ is at most

$$\sum_{t=1}^{n} f_t(\mu_t) - \min_{\mathbf{v}: \|\mathbf{v}\| \le B} \sum_{t=1}^{n} f_t(\mathbf{v}) \le \sqrt{2B^2n}$$

Summary

- Generalize universal coding to:
 - sequential prediction with general losses
 - online convex optimization (for machine learning)

- Same algorithm everywhere:
 - Bayesian posterior weights (universal coding)
 - Exponential weights
 - Online gradient descent

Recent Developments

Joint work with Wouter Koolen

- Exponential weights/gradient descent:
 - Tune parameter η to optimize **bound**
- New algorithm 'Squint':
 - Improved exponential weights for sequential prediction with linear losses
 - Automatically learns optimal parameter η for the data
 - Replaces \sqrt{n} by variance measure $\sqrt{V} \ll \sqrt{n}$
- Work in progress: transfer results to the online convex optimization setting

References

- Standard textbook on online learning:
 Cesa-Bianchi and Lugosi. Prediction, learning, and games.
 2006.
- Online convex optimization tutorial:
 Shalev-Shwartz. Online Learning and Online Convex Optimization. Foundations and Trends in Machine Learning. Vol. 4, No. 2 pp 107–194, 2011.
- Recent developments:
 Koolen, Van Erven. Second-order Quantile Methods for
 Experts and Combinatorial Games. Proceedings of the 28th
 Conference on Learning Theory (COLT), pp. 1155-1175, 2015.