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Outline

● The end: online convex optimization for machine 
learning

● The beginning: data compression and universal coding
via sequential predictions

● Sequential predictions for general losses

● Online Convex Optimization
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Machine Learning Examples
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Forecasting Electricity Consumption E-mail Spam Detection

Image Classification Cancer Research



4

Machine Learning

● Training data: 

● Many parameters:

● Optimize performance on training data:

where     measures the loss/error on

input vector

desired 
response

e.g. logistic loss: 
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Machine Learning

● Training data: 

● Many parameters:

● Optimize performance on training data:

where     measures the loss/error on

input vector

desired 
response

e.g. logistic loss: 

Problems for big data:

● Data does not fit in memory at once
● Want to update fast on extra data
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Online Convex Optimization

● Convex functions                  
● Process data sequentially:

Continuously improve parameters
by looking at one function    at a time 

● Process data sequentially,
looking at               in turn
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Initialize parameters
Lo
ss

Parameters

Online Gradient Descent
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Parameters

Round 1 
Lo
ss

Online Gradient Descent
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Online Gradient Descent
Round 1 

Move in direction of steepest descent
(step size controlled by parameter   )

Lo
ss
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Online Gradient Descent
Round 2 

Lo
ss

Move in direction of steepest descent
(step size controlled by parameter   )
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Online Gradient Descent
Round 3 

Lo
ss

Move in direction of steepest descent
(step size controlled by parameter   )
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What does this have to do with
information theory?
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Outline

● The end: online convex optimization for machine learning

● The beginning: data compression and universal
  coding via sequential predictions

● Sequential predictions for general losses

● Online Convex Optimization
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Data Compression via
Sequential Prediction

● Data:
● Encode in sequential pass through the data
● For                   :

– Predict       by distribution

– Encode       with                        bits

●      depends only on previous data 
● Efficient algorithm: arithmetic coding
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Universal Coding

● Suppose we have K prediction 
strategies/codes

● How to predict/code (nearly) as well as the 
best one?

● Regret = our codelength – codelength of best

   =
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Bayesian Predictions
for Universal Coding

● Start with uniform prior distribution
on K prediction strategies

● Predict with Bayes predictive distribution, 
which mixes strategies

according to posterior probabilities
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Regret Bound for
Bayesian Predictions

● Regret = our codelength – codelength of best

   =

≤

● Proof: let     be the best strategy. Then our predictions satisfy
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Outline

● The end: online convex optimization for machine learning

● The beginning: data compression and universal coding
via sequential predictions

● Sequential predictions for general losses:

– Log loss = data compression

– Exp-concave losses

– Linear loss
● Online Convex Optimization
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Sequential Prediction
for General Losses

● Suppose we have K prediction strategies that 
make predictions                  in round  

● Do not have to be probabilities

● For                   :
– Predict 
–               measures loss of    on outcome   

● Regret = 
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Sequential Prediction
for General Losses

● Suppose we have K prediction strategies that 
make predictions                  in round  

● Do not have to be probabilities

● For                   :
– Predict 
–               measures loss of    on outcome   

● Regret = 

Data compression:
● Predictions are prob. distributions
●                                    is log loss

Regression:
● Predictions are numbers
●                                 is squared error
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Outline

● The end: online convex optimization for machine learning

● The beginning: data compression and universal coding
via sequential predictions

● Sequential predictions for general losses:

– Log loss = data compression

– Exp-concave losses

– Linear loss
● Online Convex Optimization
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Exp-concave Losses

● Losses such that

is concave in our prediction    for some 

● Log loss:                             
– linear in    for 

● Squared error:                 
–           if          
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Exp-concave Losses

● Losses such that

is concave in our prediction    for some 

● Log loss:                             
– linear in    for 

● Squared error:                 
–           if          

Behaves much like a probability
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Exp-concavity allows
mixing “probabilities”

● If we mix predictions according to some 
weights:

● Then our “probability” is at least the mixture of 
the “probabilities” we are mixing:
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Exponential Weights Predictions

● Predict with Bayesian predictions, which mix 
strategies

according to posterior weights
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Exponential Weights Predictions

● Predict with Bayesian predictions, which mix 
strategies

according to posterior weights
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Regret for Exp-Concave Losses

● Regret = our total loss – loss of best strategy

   =

            ≤

● Proof: same steps as for log loss give
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Outline

● The end: online convex optimization for machine learning

● The beginning: data compression and universal coding
via sequential predictions

● Sequential predictions for general losses:

– Log loss = data compression

– Exp-concave losses

– Linear loss
● Online Convex Optimization
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Linear Loss
● Predict with a mix of K prediction strategies:

● Loss is linear in the mixing weights:

where     is the loss of using strategy k
(can be anything)

● Example: strategies classify emails as spam or not spam

            
          

if strategy k makes mistake on t-th e-mail,

otherwise
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Regret for Linear Loss

● Can approximate linear loss by an
exp-concave loss            with parameter 

● Approximation error:       per round (if                )

● Exponential weights algorithm with
achieves
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Outline

● The end: online convex optimization for machine learning

● The beginning: data compression and universal coding
via sequential predictions

● Sequential predictions for general losses

● Online Convex Optimization

– Linear optimization

– Convex optimization
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Online Linear Optimization

● Linear loss with an infinite number of 
comparison strategies

● Loss of    in round t is

● Our loss with weights          is

where                        is the mean of   



33

Exponential Weights

● Exponential weights with Gaussian prior

gives Gaussian posterior weights

with mean  
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Regret for Linear Optimization

● Thm: If               for all t. Then the regret of 
exponential weights with

with respect to all    s.t.                is at most

● Essentially same analysis as for finite
number of comparison strategies

● Essentially same analysis as for finite number 
of comparison strategies
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Outline

● The end: online convex optimization for machine learning

● The beginning: data compression and universal coding
via sequential  predictions

● Sequential predictions for general losses

● Online Convex Optimization

– Linear optimization

– Convex optimization
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Machine Learning

● Training data: 

● Many parameters:

● Optimize performance on training data:

where     measures the loss/error on

input vector

desired 
response

e.g. logistic loss: 
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Online Convex Optimization

● Loss of             in round t is

● Our loss with weights           is

● Regret = 
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Reduction to Linear Optimization
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Reduction to Linear Optimization

Approximate convex orange by linear blue
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Exponential Weights becomes 
Gradient Descent

● Effect of linear approximation:

● Mean of exponential weights becomes

which is exactly gradient descent!
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Regret for Convex Optimization

● Thm: If                          for all t. Then the regret 
of exponential weights = gradient descent with

with respect to all    s.t.                is at most

● Essentially same analysis as for finite number 
of comparison strategies
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Summary

● Generalize universal coding to:
– sequential prediction with general losses

– online convex optimization

(for machine learning)

● Same algorithm everywhere:
– Bayesian posterior weights (universal coding)

– Exponential weights

– Online gradient descent
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Recent Developments

● Exponential weights/gradient descent:
– Tune parameter    to optimize bound 

● New algorithm 'Squint':
– Improved exponential weights for sequential 

prediction with linear losses

– Automatically learns optimal parameter
for the data

– Replaces        by variance measure  

● Work in progress: transfer results to the online 
convex optimization setting

Joint work with Wouter Koolen
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