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Outline

The end: online convex optimization for machine
learning

The beginning: data compression and universal coding
via sequential predictions

Sequential predictions for general losses

Online Convex Optimization




Machine Learning Examples
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Machine Learning
desired
o Yl Y. -\ response
e T data: .. !
ralnlng ala <X1> ? ! ( X ﬁ) input vector

- Many parameters: v = (v}, ..., v%)

)

» Optimize performance on training data:
mvin fl(v)+'°°+fn(v)

Y;
where f; measures the loss/error on (Xt)

e.g. logistic loss: f,(v) = log(1 + e~ Y#{v: X))
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* Traini

* Many
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Machine Learning
- TN

Problems for

pr

« Data does not fit In memory at once
* \Want to update fast on extra data

e.

g
» Optimize perfo on training data:
|

mvin fl(v)+'°°+fn(v)

Y,
where f; measures the Toss/error on (Xt)

g. logistic loss: f;(v) = log(1 + e~ Yt{v:Xe))




Online Convex Optimization
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» Convex functions f;(v),..., fn(v)
|« Process data sequentially:

Continuously iImprove parameters v
by looking at i
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Online Gradient Descent
Initialize parameters

Loss
|

O
V1

Parameters v




Loss

Online Gradient Descent
Round 1

Parameters v
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Online Gradient Descent
Round 1

Loss
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Move In direction of steepest descent
(step size controlled by parametern)
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Online Gradient Descent
Round 2

f2(v2)
-
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V1 V3 V2

Loss
|

Move In direction of steepest descent
(step size controlled by parametern)
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Online Gradient Descent
Round 3

Loss
|

f3(v3)

® O T 0 ¢
V1 V3 V2 Vg

Move In direction of steepest descent
(step size controlled by parametern)
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What does this have to do with
Information theory?




Outline

The end: online convex optimization for machine learning
I.

The beginning: data compression and universal
coding via sequential predictions

Sequential predictions for general losses

Online Convex Optimization




Data Compression via
Sequential Prediction

Data: X4,...,X,
Encode in sequential pass through the data
Fort=1,...,n:

Predict X, by distribution b,

Encode X; with —log P;(X};) bits

P; depends only on previous data X;. ..., X,

Efficient algorithm: arithmetic coding
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Universal Coding

Suppose we have K prediction
strategies/codes P, , ..., P*

How to predict/code (nearly) as well as the
best one?

= our codelength — codelength of best

=3 —log Pi(X0) ~min 3 ~log PA(X,)

t=1
15




Bayesian Predictions
for Universal Coding

Start with uniform prior distribution w; (k) =
on K prediction strategies

Predict with Bayes predictive distribution,
which strategies

pt(Xt) = Pr(X¢| X1,..., X¢—1) Zwt Pk (X¢)

according to posterior probabllltles
)T PE(X,
wt(k): wl( )Hszl s( ) §

normalization

) S——




Regret Bound for
Bayesian Predictions

: = our codelength — codelength of best
=> 1=y —log P,(X;) — miny, >ty — log PF(Xy)
< log K

- Proof: let £*be the best strategy. Then our predictions satisfy




Outline

The end: online convex optimization for machine learning

The beginning: data compression and universal coding
via seguential predictions

- Log loss = data compression
- Exp-concave losses
I - Linear loss

Online Convex Optimization

) NS S
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Seqguential Prediction
for General Losses

Suppose we have K predlctlon strategies that
make predictions p;, . .. ,p;*in round ¢

Do not have to be probabilities

Fort=1,....,n
Predict Dy
loss; (p) measures loss of p on outcome X;

Regret = » loss(p¢) — min > lossy (py) g
t=1 t=1

—— ———




( Seqguential Prediction
(General | nsges

- Supp Data compression: it

* Predictions are prob. distributions
make |« lossi(p) = —logp(X;) is

* DO nO| Regression:
* Predictions are numbers

) IOSSt(p) — (Xt — p)2 1S /

e Fort =1,
- Predict py
- loss;(p) measures loss of p on outcome X

* Regret=) loss;(p;) —min ) loss;(p;)
t=1 t=1

\__ ——— e e — e ——




Outline

The end: online convex optimization for machine learning

The beginning: data compression and universal coding
via seguential predictions

Sequential predictions for general losses:
- Log loss = data compression

- Linear loss
Online Convex Optimization
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EXp-concave Losses

» Losses such that

o~ 1osst(p)

IS concave In our prediction p for somen > 0

» Log loss; e~ 1o55¢(P) — p(X,)

—linearinp forn =1
2
. Squared error: e~"(X:=P)
- =1 if X¢,p€[-1,+1]

22
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EXp-concave Losses |

Behaves much like a probabilig ‘
» Losses such that

o~ 1osst(p)

IS In our prediction p for somen > 0

» Log loss: e~ 1o5¢(P) — p(X,)
—linearinp forn =1
. Squared error: e~ "(Xt=P)°
- =1 if X¢,p€[-1,+1] N




Exp-concavity allows
mixing “probabilities”

If we mix predictions according to some
weights:

K
Pt = Z wt(/f)piC
k=1

Then our “probability” is at least the mixture of
the “probabillities” we are mixing:

K
6—7710331: (Pt) Z Z wt(k)e—nlosst (p’;“)
k=1
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Exponential Weights Predictions

» Predict with Bayesian predictions, which
strategies

K
Pt = Z Wy (/f)p?]:€
k=1

according to posterior weights

wt(k): wl(k)Hs 1 P S(X)

normalization

25
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Exponential Weights Predictions

» Predict with Bayesian predictions, which
strategies

K
Pt = Z we (k)py
k=1

according to posterior weights

B TTEL e—nloss. (2)
wt(k) _ wl( )Hszl €

normalization
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Regret for Exp-Concave Losses

. = our total loss — loss of best strategy
. : k
= Z loss¢(pr) — min Z losst (py)
t=1 t=1
< log K
7]

* Proof. same steps as for log loss give

Z nloss (pz) < Z nloss: (pf ) + log K i
t=1 t=1




Outline

The end: online convex optimization for machine learning

The beginning: data compression and universal coding
via seguential predictions

Sequential predictions for general losses:

- Log loss = data compression
- Exp-concave losses

Online Convex Optimization
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Linear LOsSS

* Predict with a of K prediction strategies:

where ¢F

oF =4

Dt = Zi{zl wt(k)l?f

* Loss is linear in the mixing weights:

lossy (wy) = 37y, wi(k)4f
IS the loss of using strategy k

(can be anything)

« Example: strategies classify emails as spam or not spam

(1 if strategy k makes mistake on t-th e-mail,

) S——

0 otherwise
\
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Regret for Linear Loss

» Can approximate linear loss by an
exp-concave loss m:(w) with parameter 7

’ :1/8 per round (if ¢* € [0, 1])
+ Exponential weights algorithm with n = /21805
achieves
log K
Regret < 25 | 7;77 = /nlog(K)/2
i
mu(w) = —§log 3 u(ie 30
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Outline

The end: online convex optimization for machine learning

The beginning: data compression and universal coding
via seguential predictions

Sequential predictions for general losses

- Linear optimization
- Convex optimization
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Online Linear Optimization

» Linear loss with an number of
comparison strategies v ¢ R?

* Loss of vinroundtis

(¥ = (v,¢c;)  for some costs ¢; € R?

» Our loss with weights w(v) is

loss¢ (wy) = (e, ¢t)

where 1y = Ky, (1) V] is the mean of wy -

N — e -




Exponential Weights

» Exponential weights with Gaussian prior

w1 — N(O, I)
gives
wl (fv) Ht:ll 6—77<’U>Cs>
p— S= — I
w(v) normalization N (e, 1)
with mean
— =7 ZS 1 Cs

33



Regret for Linear Optimization

« Thm: If ||e¢|| < 1for all t. Then the regret of
exponential weights with

| B2
=\ ——
n

with respect to all v s.t. ||v|| < B is at most

Regret < v2B2n

» Essentially as for finite
number of comparison strategies

34



Outline

The end: online convex optimization for machine learning

The beginning: data compression and universal coding
via sequential predictions

Sequential predictions for general losses
Online Convex Optimization

- Linear optimization

35
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Machine Learning

desired
» Training data: 0 R i response
Xl Xﬁ ~ Input vector

- Many parameters: v = (v}, ..., v%)

)

» Optimize performance on training data:

mvin fl(v)+'°°+fn(v)

Y,
where f; measures the Toss/error on (Xt)

e.g. logistic loss: f;(v) = log(1 4 e~ Yt{v: X))
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Online Convex Optimization

- Loss of v € R%in round t is

0y = fi(v) for convex f;
 Our loss with weights w;(v) is

loss (we) = fi(pee)

- Regret= » fi(p) - mgant(U)
t=1 t=1

) S——
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Reduction to Linear Optimization

o _ ft(v)




(

Reduction to Linear Optimization

‘C_3_
m_
O_
0 | i
| | | —@— | ,3| | |
-3 -2 Mt -1 0 1 2 3

Approximate convex orange by linear blue
fe(v) = felpee) + (v — pe), V fe(pee))
N — -




Exponential Weights becomes
Gradient Descent

» Effect of linear approximation:

ci = V fi(pe)

» Mean of exponential weights becomes
pr =10y Vis(ps) = 1 =V fro1(pe1)

which Is exactly |

40



Regret for Convex Optimization

Thm: If ||V fi()|| < 1 for all t. Then the regret
of exponential weights = gradient descent with

| B2
=\ ——
n

with respect to all v s.t. ||v|| < B is at most

v: ||v]|[<B =

> felw) + min Y fi(v)< V2B2n
=1 =1

41




Summary

* Generalize universal coding to:

- sequential prediction with general losses
- online convex optimization
(for machine learning)

| . everywhere:

- Bayesian posterior weights (universal coding)
- Exponential weights
- Online gradient descent

\__ ——— e e — e ——
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Recent Developments

Joint work with Wouter Koolen

» Exponential weights/gradient descent:
- Tune parameter 1 to optimize bound
* New algorithm 'Squint":

— for sequential
prediction with linear losses

- Automatically learns optimal parametern
for the data

- Replaces v/n by variance measure V'V < /n

* Work in progress: transfer results to the online
convex optimization setting

<
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