Young European Queueing Theorists Workshop, November 2 — 4, 2022

A Tutorial Introduction to
(Distributed) Online Convex Optimization

ol UNIVERSITY
“® OF AMSTERDAM

Tim van Erven

Based on joint work with:

Dirk van der Hoeven Hedi Hadiji

Example:

Electricity Forecasting

Every day t an electricity company needs to
predict how much electricity Y; is needed the
next day

Given feature vector X, € R9, predict
Y: = (ws, X;) with a linear model

Next day: observe Y;

Measure loss by f,(w,) = (Y: — Y;)? and
improve parameter estimates: w; — W1

2/15

Example: Electricity Forecasting

» Every day t an electricity company needs to
predict how much electricity Y; is needed the
next day

> Given feature vector X; € R¢, predict
Y: = (ws, X;) with a linear model
» Next day: observe Y;

> Measure loss by fi(w;) = (Y; — ¥;)? and
improve parameter estimates: w; — Wey1

Goal: Predict almost as well as the best possible parameters u:

T T
Regret (Z — Z fi(u)

2/15

B e np =

Online Convex Optimization

Parameters w take values in a convex domain W C R?
fort=1,2,..., T do
Learner predicts w; € W
Nature reveals convex loss function f; : W — R
end for

Viewed as a zero-sum game against Nature:

V' = minmax minmax --- minmax max Regret(u)
wr i w2 f wr fr ueWw

3/15

B e np =

Online Convex Optimization

Parameters w take values in a convex domain W C R?
fort=1,2,..., T do
Learner predicts w; € W
Nature reveals convex loss function f; : W — R
end for

Viewed as a zero-sum game against Nature:

V' = minmax minmax --- minmax max Regret(u)
wr i w2 f wr fr ueWw

Make standard assumptions:
» Domain W compact with diameter at most D
> Bounded gradients: ||Vf(w:)| < G

3/15

Online Gradient Descent

Wep1 = We — 771&Vft('wt)

Wil argmin ||lw — Wi |
wew

Theorem (Zinkevich, 2003)

Online gradient descent with n; = # guarantees

Regret - (u) < gDGﬁ

for any choices of Nature.

Without further assumptions, this is optimal up to the constant factor.
(If T is known in advance, the optimal constant is 1.)

4/15

OGD Analysis

Simplifications: Assume no projections, constant learning rate:
Wey1 = we — NV (wy)

Proof:
1. Reduction to Linear Losses
By convexity of f;, abbreviating g = Vf;(w;):

fe(u)

t=1 t=1

5/15

OGD Analysis

Simplifications: Assume no projections, constant learning rate:
w1 = wy — NV(w:)

Proof:
2. Analyzing Linear Losses, g; = Vf;(w;)
[weir = ul? = [we —u —nge|?

= lwe — u|® — 2n(we — u, g¢) + 07|l ge|?

5/15

OGD Analysis

Simplifications: Assume no projections, constant learning rate:
Wiyl = Wt — UVft(’wt)
Proof:
2. Analyzing Linear Losses, g; = Vf;(w;)
lwers —ul® = [lwe —u —nge||?
= ||we — u|* = 2n(w: — u, gi) + 7’|l gl
&

1 1
(we,g1) = (w.g0) = 5 lwe = wlf = 5 wes — ul + Flge

5/15

OGD Analysis

Simplifications: Assume no projections, constant learning rate:
Wiy = wy — NVi(we)

Proof:

2. Analyzing Linear Losses, g; = Vf;(w;)
[wepr — u|)? = [Jwe —u — nge|?

= [lwe —u|? = 2n(w: —u, ge) +7?[|gel?

|2

1 1
(w09 = (w,g0) = 5 lJwe = wlf = 5 wes = ul + F gl

T T
1 1 n
> ((werg0) — {.90)) = 5o lfwn —wll? = - lfwr o —wlf + 5 > lael?

5/15

OGD Analysis

Simplifications: Assume no projections, constant learning rate:
Wiyl = W — ant(wt)

Proof:
2. Analyzing Linear Losses, g; = Vf(w;)

lwer — ull* = [[we —w —nge|®
= [lwe — wl® — 2n{we —u, ge) + 17°|ge ||

1 1 n
(we, ge) — (u, gr) = %Ilwt —ul? - %me —ul?+ S llgel®

t=1

.
1 " 1
Regret(u) < 2—77||w1 —ul®+ 5 tz:; lgel” < D2 EG T

T T
1 1 n
Z (wy, gr) — (u 9t>) = %le - U||2 - %Hwﬂl - UH2 + 2 Z \9t||2

5/15

OGD Analysis
Simplifications: Assume no projections, constant learning rate:
Wiyl = W — 77Vft(’wt)

Proof:
2. Analyzing Linear Losses, g; = Vf;(w;)

[werr — | = |lwe — u — nge|?
= |we — u|® — 2n(we — u, g¢) + 07| ge|®
1 2 1 2, 7N 2
(wt, gr) — (u,gt) = %”wt —ul® — %me —ul|* + *HgtH

T T
1 1
D ((wege) = (w.90) = oo = wlP = o Jwr i~ wlf + gg lgel?

t=1

N |

;
1 n 1 n
Regret < = —ul?+ = 2< - p? G*T
egretr(u) < 2nllwl ul” + > ;:1 llg:]|” < 2 +

D
=DGVT forn = ——=
VT

5/15

Online Convex Optimization with Delays

Delayed Feedback:
» Suppose g; not observed at end of round t, but later
> Let Uy C {1,...,t — 1} list missing gradients at start of round t

6/15

Online Convex Optimization with Delays

Delayed Feedback:
» Suppose g; not observed at end of round t, but later
> Let Uy C {1,...,t — 1} list missing gradients at start of round t

Theorem (McMahan, Streeter, 2014)

Online gradient descent (without projections and with n, = n) using only
the available gradients guarantees

-
1 n
Regretr () < o lwn —ul’ + 3 3 (llgel? +2lgel 3 losI)
t=1 SEU

1
<D+ 2A+27)G2T ifl] <7

2n 2

D
_D6/A+20T forn=——2
(1+27) 1= e/t

6/15

Delayed Feedback Analysis

1. Reduction to linear losses

2. Regret of OGD with delayed feedback w; is at most:
> Regret of oracle OGD wy; that observes all gradients
> + differences in linear losses between w; and w;:

ZT: (wt, gr) wtagt>)

t=1

t=1 se[t—1\U; s€[t—1]

;

> ((wl Ny g —(wi—n) 957gt>)
-

= Z<77 Z gsagt>

t=1 seU;

< nz lgell D llgs|

seU;

t=1 selU; 7/15

.
1 n
Regrety(u) < %Ilun —ul® + 5 Z llgell” + nz llg:ll Z llgs]|
t=1

Distributed Online Convex Optimization
[Van der Hoeven, Hadiji, Van Erven, 2022]:

Given G between N agents:
1: fort=1,2,..., T do
Nature activates agent /; € {1,..., N}

Active agent /; predicts w: € W

2

3

4: Nature reveals convex loss function f; : W — R

5. All agents can send a message to their neighbors in G
6:

end for

Agents cooperate to minimize joint regret:

T T
Regret(u) = Z fe(w:) — Z fe(u)

8/15

Distributed Learning Causes Delayed Feedback
Incurring the maximum delay:
> If is diam(G), then it takes at most diam(G) rounds
to transmit each gradient g; to all agents
> So each agent can run OGD with feedback delay 7 = diam(G) to get

Regret,(u) = O(DG\/W)

9/15

Distributed Learning Causes Delayed Feedback
Incurring the maximum delay:
> If is diam(G), then it takes at most diam(G) rounds
to transmit each gradient g; to all agents
> So each agent can run OGD with feedback delay 7 = diam(G) to get

Regret(u) = O(DG\/W)

This is suboptimal:

cluster F; cluster />

@ active agent
O inactive agent

Two clusters that can be made arbitrarily far apart
by extending the line that connects them

9/15

Distributed Learning Causes Delayed Feedback
Incurring the maximum delay:

> If is diam(G), then it takes at most diam(G) rounds
to transmit each gradient g; to all agents
> So each agent can run OGD with feedback delay 7 = diam(G) to get

Regret(u) = (DG\/(W)

This is suboptimal:

cluster F; cluster />

@ active agent
O inactive agent

Two clusters that can be made arbitrarily far apart
by extending the line that connects them

Much better: Learn separately for each cluster:

Regret+(u (DG\/dlam(}'l T + DG+/diam(F))

But optimal clustering depends on activations. How do we learn it?

9/15

Learning the Best Graph Partition

Given collection Q of subgraphs of G, a is a partition
{F1,...,F;} of G such that each F; € Q.

Theorem (Van der Hoeven, Hadiji, Van Erven, 2022)

Given any Q, there exists an algorithm that guarantees

Z Regret 7 (u;)

Jj=1

= O(Z ||'u,J||G(\/d|am i) TiIn(1 + | Q| diam(J)||uj||TJ)))

for any Q-partition {Fy,...,F,;} and any us,...,u, € W.

Regret z (u) = Z (fi(w;) — fi(u))

t:hEeF;

10/15

Comparator-Adaptive Algorithms

Unbounded domain:
> Regret(u) = O(DG+/T) when comparator w € W with diameter
of W at most D.
» What if we have no bound a priori on comparator norm ||lul|, so
we want to consider W = R9?

Theorem (McMahan, Streeter, 2012)

Given G and any € > 0, there exists an online algorithm that achieves
Regret+(u) = O(||u||Gy/ T log w + €G) for all u € RH.

> Essentially as good as bounded domain W = {w : [|w| < 1D} for
oracle choice D = 2|u||.

11/15

Aggregating Multiple Online Methods
Aggregation:
» Given K online learning algorithms with iterates w}, ... wK
> Predict almost as well as the best one k*:

Regret,(u) < Regret (u) + overhead

12/15

Aggregating Multiple Online Methods
Aggregation:
> Given with iterates wi, ..., wk
> Predict almost as well as the best one k*:

Regret,(u) < Regret (u) + overhead

Results: [Littlestone, Warmuth, 1994], [Vovk, 1998]: If fi(w¥) € [a, b],
then can achieve

overhead = O((b— a)V T In K)

12/15

Aggregating Multiple Online Methods
Aggregation:
> Given with iterates w
» Predict almost as well as the best one k*:

L wk
Regret,(u) < Regret (u) + overhead

Results: [Littlestone, Warmuth, 1994], [Vovk, 1998]: If fi(w¥) € [a, b],
then can achieve

overhead = O((b— a)V T In K)

[Cuskosky, 2019]: For comparator-adaptive methods with linear(ized)
losses, simple iterate addition w; = Zszl w¥ achieves

overhead = Z Regret (0) = O(¢KG) think: e x 1/K
P

12/15

Aggregating Multiple Online Methods
Aggregation:
> Given with iterates w
» Predict almost as well as the best one k*:

L wk
Regret,(u) < Regret (u) + overhead
Results: [Littlestone, Warmuth, 1994], [Vovk, 1998]: If fi(w¥) € [a, b],

then can achieve

overhead = O((b— a)V T In K)

[Cuskosky, 2019]: For comparator-adaptive methods with linear(ized)
losses, simple iterate addition w; = Zszl w¥ achieves
overhead = Z Regret (0) = O(¢KG) think: e x 1/K
Ktk
T K T T
D (we,ge) = (u,g0) =Y > (wh,ge) — > (u,g¢)

Proof: t=1 k=1 t=1 t=1
T

i(’wt 90 = (wgd) + > Y ((whi g - (0,90)

t=1 k#k* t=1 12/15

Learning the Graph Partition: Approach

Challenge:
» For each node i in the graph and cell F; € Q that contains i,
construct an algorithm wg"J) that can handle delays 7 = diam(Fj)
» Then i aggregates iterates wgi’j) for all such j

» Problem: standard aggregation techniques with delays incur
overhead that depends on max; diam(F;)

13/15

Learning the Graph Partition: Approach

Challenge:
» For each node i in the graph and cell F; € Q that contains i,
construct an algorithm w{"?) that can handle delays T = diam(F)
» Then i aggregates iterates wgi’j) for all such j

» Problem: standard aggregation techniques with delays incur
overhead that depends on max; diam(F;)

Our Solution:

» Make sure that wgi’j) not only can handle delays, but are also
comparator adaptive (new result)

» Then aggregation is possible using , with overhead
that depends on diam(F;) for optimal ;.

» Project w; onto bounded W using black-box reduction by
[Cutkosky, Orabona, 2018]

13/15

Summary

Online Convex Optimization
» Online gradient descent
» Delayed feedback
» Comparator-adaptive algorithms
> Aggregating multiple online methods
» New: Combined comparator-adaptive + delayed feedback

Distributed Online Convex Optimization
» Agents in a graph cooperate to minimize joint regret
> New: Learning the best graph partition

14 /15

References

» D. van der Hoeven, H. Hadiji and T. van Erven. Distributed Online
Learning for Joint Regret with Communication Constraints,
Proceedings of the 33rd International Conference on Algorithmic Learning
Theory (ALT), no. 167, pp. 1003-1042, 2022.

15/15

