A Tutorial Introduction to (Distributed) Online Convex Optimization

Tim van Erven

Based on joint work with:

Dirk van der Hoeven

Hedi Hadiji

Example: Electricity Forecasting

- Every day t an electricity company needs to predict how much electricity Y_t is needed the next day
- Given feature vector $X_t \in \mathbb{R}^d$, predict $\hat{Y}_t = \langle w_t, X_t \rangle$ with a linear model
- ► Next day: observe *Y_t*
- Measure loss by $f_t(w_t) = (Y_t \hat{Y}_t)^2$ and improve parameter estimates: $w_t \to w_{t+1}$

Example: Electricity Forecasting

- Every day t an electricity company needs to predict how much electricity Y_t is needed the next day
- Given feature vector $m{X}_t \in \mathbb{R}^d$, predict $\hat{Y}_t = \langle m{w}_t, m{X}_t
 angle$ with a linear model
- ▶ Next day: observe Y_t
- Measure loss by $f_t(w_t) = (Y_t \hat{Y}_t)^2$ and improve parameter estimates: $w_t \to w_{t+1}$

Goal: Predict almost as well as the best possible parameters u:

$$\mathsf{Regret}_{\mathcal{T}}(oldsymbol{u}) = \sum_{t=1}^{\mathcal{T}} f_t(oldsymbol{w}_t) - \sum_{t=1}^{\mathcal{T}} f_t(oldsymbol{u})$$

Online Convex Optimization

Parameters w take values in a convex domain $\mathcal{W} \subset \mathbb{R}^d$

- 1: **for** t = 1, 2, ..., T **do**
- 2: Learner predicts $oldsymbol{w}_t \in \mathcal{W}$
- 3: Nature reveals convex loss function $f_t: \mathcal{W} \to \mathbb{R}$
- 4: end for

Viewed as a zero-sum game against Nature:

$$V = \min_{oldsymbol{w}_1} \max_{f_1} \min_{oldsymbol{w}_2} \max_{f_2} \cdots \min_{oldsymbol{w}_T} \max_{f_T} \max_{oldsymbol{u} \in \mathcal{W}} \mathsf{Regret}_{\mathcal{T}}(oldsymbol{u})$$

Online Convex Optimization

Parameters w take values in a convex domain $\mathcal{W} \subset \mathbb{R}^d$

- 1: **for** t = 1, 2, ..., T **do**
- 2: Learner predicts $oldsymbol{w}_t \in \mathcal{W}$
- 3: Nature reveals convex loss function $f_t: \mathcal{W} \to \mathbb{R}$
- 4: end for

Viewed as a zero-sum game against Nature:

$$V = \min_{oldsymbol{w}_1} \max_{f_1} \min_{oldsymbol{w}_2} \max_{f_2} \cdots \min_{oldsymbol{w}_T} \max_{f_T} \max_{oldsymbol{u} \in \mathcal{W}} \mathsf{Regret}_{\mathcal{T}}(oldsymbol{u})$$

Make standard assumptions:

- ightharpoonup Domain $\mathcal W$ compact with diameter at most D
- ▶ Bounded gradients: $\|\nabla f_t(w_t)\| \leq G$

Online Gradient Descent

$$egin{array}{ll} ilde{w}_{t+1} &= w_t - \eta_t
abla f_t(w_t) \ w_{t+1} &= rg \min_{w \in \mathcal{W}} \|w - ilde{w}_{t+1}\| \end{array}$$

Theorem (Zinkevich, 2003)

Online gradient descent with $\eta_t = \frac{D}{G\sqrt{t}}$ guarantees

$$\mathsf{Regret}_{\mathcal{T}}(u) \leq \frac{3}{2} \mathsf{DG} \sqrt{\mathcal{T}}$$

for any choices of Nature.

Without further assumptions, this is **optimal** up to the constant factor. (If T is known in advance, the optimal constant is 1.)

Simplifications: Assume no projections, constant learning rate:

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta \nabla f_t(\boldsymbol{w}_t)$$

Proof:

1. Reduction to Linear Losses

By convexity of f_t , abbreviating $g_t = \nabla f_t(w_t)$:

$$\mathsf{Regret}_{\mathcal{T}}(oldsymbol{u}) = \sum_{t=1}^{T} \Big(f_t(oldsymbol{w}_t) - f_t(oldsymbol{u}) \Big) \leq \sum_{t=1}^{T} \Big(\langle oldsymbol{w}_t, oldsymbol{g}_t
angle - \langle oldsymbol{u}, oldsymbol{g}_t
angle \Big)$$

Simplifications: Assume no projections, constant learning rate:

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta \nabla f_t(\boldsymbol{w}_t)$$

Proof:

$$\|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^2 = \|\boldsymbol{w}_t - \boldsymbol{u} - \eta \boldsymbol{g}_t\|^2$$

= $\|\boldsymbol{w}_t - \boldsymbol{u}\|^2 - 2\eta \langle \boldsymbol{w}_t - \boldsymbol{u}, \boldsymbol{g}_t \rangle + \eta^2 \|\boldsymbol{g}_t\|^2$

Simplifications: Assume no projections, constant learning rate:

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta \nabla f_t(\boldsymbol{w}_t)$$

Proof:

$$\begin{aligned} \|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^2 &= \|\boldsymbol{w}_t - \boldsymbol{u} - \eta \boldsymbol{g}_t\|^2 \\ &= \|\boldsymbol{w}_t - \boldsymbol{u}\|^2 - 2\eta \langle \boldsymbol{w}_t - \boldsymbol{u}, \boldsymbol{g}_t \rangle + \eta^2 \|\boldsymbol{g}_t\|^2 \\ \langle \boldsymbol{w}_t, \boldsymbol{g}_t \rangle - \langle \boldsymbol{u}, \boldsymbol{g}_t \rangle &= \frac{1}{2\eta} \|\boldsymbol{w}_t - \boldsymbol{u}\|^2 - \frac{1}{2\eta} \|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^2 + \frac{\eta}{2} \|\boldsymbol{g}_t\|^2 \end{aligned}$$

Simplifications: Assume no projections, constant learning rate:

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta \nabla f_t(\boldsymbol{w}_t)$$

Proof:

$$\begin{aligned} \|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^2 &= \|\boldsymbol{w}_t - \boldsymbol{u} - \eta \boldsymbol{g}_t\|^2 \\ &= \|\boldsymbol{w}_t - \boldsymbol{u}\|^2 - 2\eta \langle \boldsymbol{w}_t - \boldsymbol{u}, \boldsymbol{g}_t \rangle + \eta^2 \|\boldsymbol{g}_t\|^2 \\ \langle \boldsymbol{w}_t, \boldsymbol{g}_t \rangle - \langle \boldsymbol{u}, \boldsymbol{g}_t \rangle &= \frac{1}{2\eta} \|\boldsymbol{w}_t - \boldsymbol{u}\|^2 - \frac{1}{2\eta} \|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^2 + \frac{\eta}{2} \|\boldsymbol{g}_t\|^2 \\ \sum_{t=1}^T \left(\langle \boldsymbol{w}_t, \boldsymbol{g}_t \rangle - \langle \boldsymbol{u}, \boldsymbol{g}_t \rangle \right) &= \frac{1}{2\eta} \|\boldsymbol{w}_1 - \boldsymbol{u}\|^2 - \frac{1}{2\eta} \|\boldsymbol{w}_{T+1} - \boldsymbol{u}\|^2 + \frac{\eta}{2} \sum_{t=1}^T \|\boldsymbol{g}_t\|^2 \end{aligned}$$

Simplifications: Assume no projections, constant learning rate:

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta \nabla f_t(\boldsymbol{w}_t)$$

Proof:

$$\begin{aligned} \|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^2 &= \|\boldsymbol{w}_t - \boldsymbol{u} - \eta \boldsymbol{g}_t\|^2 \\ &= \|\boldsymbol{w}_t - \boldsymbol{u}\|^2 - 2\eta \langle \boldsymbol{w}_t - \boldsymbol{u}, \boldsymbol{g}_t \rangle + \eta^2 \|\boldsymbol{g}_t\|^2 \\ \langle \boldsymbol{w}_t, \boldsymbol{g}_t \rangle - \langle \boldsymbol{u}, \boldsymbol{g}_t \rangle &= \frac{1}{2\eta} \|\boldsymbol{w}_t - \boldsymbol{u}\|^2 - \frac{1}{2\eta} \|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^2 + \frac{\eta}{2} \|\boldsymbol{g}_t\|^2 \\ \sum_{t=1}^T \left(\langle \boldsymbol{w}_t, \boldsymbol{g}_t \rangle - \langle \boldsymbol{u}, \boldsymbol{g}_t \rangle \right) &= \frac{1}{2\eta} \|\boldsymbol{w}_1 - \boldsymbol{u}\|^2 - \frac{1}{2\eta} \|\boldsymbol{w}_{T+1} - \boldsymbol{u}\|^2 + \frac{\eta}{2} \sum_{t=1}^T \|\boldsymbol{g}_t\|^2 \\ \operatorname{Regret}_T(\boldsymbol{u}) &\leq \frac{1}{2\eta} \|\boldsymbol{w}_1 - \boldsymbol{u}\|^2 + \frac{\eta}{2} \sum_{t=1}^T \|\boldsymbol{g}_t\|^2 \leq \frac{1}{2\eta} D^2 + \frac{\eta}{2} G^2 T \end{aligned}$$

Simplifications: Assume no projections, constant learning rate:

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta \nabla f_t(\boldsymbol{w}_t)$$

Proof:

$$\begin{aligned} \|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^2 &= \|\boldsymbol{w}_t - \boldsymbol{u} - \eta \boldsymbol{g}_t\|^2 \\ &= \|\boldsymbol{w}_t - \boldsymbol{u}\|^2 - 2\eta \langle \boldsymbol{w}_t - \boldsymbol{u}, \boldsymbol{g}_t \rangle + \eta^2 \|\boldsymbol{g}_t\|^2 \\ \langle \boldsymbol{w}_t, \boldsymbol{g}_t \rangle - \langle \boldsymbol{u}, \boldsymbol{g}_t \rangle &= \frac{1}{2\eta} \|\boldsymbol{w}_t - \boldsymbol{u}\|^2 - \frac{1}{2\eta} \|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^2 + \frac{\eta}{2} \|\boldsymbol{g}_t\|^2 \\ \sum_{t=1}^T \left(\langle \boldsymbol{w}_t, \boldsymbol{g}_t \rangle - \langle \boldsymbol{u}, \boldsymbol{g}_t \rangle \right) &= \frac{1}{2\eta} \|\boldsymbol{w}_1 - \boldsymbol{u}\|^2 - \frac{1}{2\eta} \|\boldsymbol{w}_{T+1} - \boldsymbol{u}\|^2 + \frac{\eta}{2} \sum_{t=1}^T \|\boldsymbol{g}_t\|^2 \\ \operatorname{Regret}_T(\boldsymbol{u}) &\leq \frac{1}{2\eta} \|\boldsymbol{w}_1 - \boldsymbol{u}\|^2 + \frac{\eta}{2} \sum_{t=1}^T \|\boldsymbol{g}_t\|^2 \leq \frac{1}{2\eta} D^2 + \frac{\eta}{2} G^2 T \\ &= DG\sqrt{T} \qquad \text{for } \eta = \frac{D}{G\sqrt{T}} \end{aligned}$$

Online Convex Optimization with Delays

Delayed Feedback:

- ightharpoonup Suppose g_t not observed at end of round t, but later
- ▶ Let $\mathcal{U}_t \subset \{1, \dots, t-1\}$ list missing gradients at start of round t

Online Convex Optimization with Delays

Delayed Feedback:

- ightharpoonup Suppose g_t not observed at end of round t, but later
- ▶ Let $\mathcal{U}_t \subset \{1, \dots, t-1\}$ list missing gradients at start of round t

Theorem (McMahan, Streeter, 2014)

Online gradient descent (without projections and with $\eta_t = \eta$) using only the available gradients guarantees

$$\begin{aligned} \mathsf{Regret}_{\mathcal{T}}(\boldsymbol{u}) &\leq \frac{1}{2\eta} \|\boldsymbol{w}_1 - \boldsymbol{u}\|^2 + \frac{\eta}{2} \sum_{t=1}^{T} \left(\|\boldsymbol{g}_t\|^2 + 2\|\boldsymbol{g}_t\| \sum_{s \in \mathcal{U}_t} \|\boldsymbol{g}_s\| \right) \\ &\leq \frac{1}{2\eta} D + \frac{\eta}{2} (1 + 2\tau) G^2 T \qquad \textit{if } |\mathcal{U}_t| \leq \tau \\ &= DG \sqrt{(1 + 2\tau)T} \qquad \textit{for } \eta = \frac{D}{G\sqrt{(1 + 2\tau)T}} \end{aligned}$$

Delayed Feedback Analysis

- 1. Reduction to linear losses
- 2. Regret of OGD with delayed feedback w_t is at most:
 - Regret of oracle OGD w_t^* that observes all gradients

$$ightharpoonup$$
 + differences in linear losses between w_t and w_t^* :

$$\begin{split} \sum_{t=1}^{T} \left(\langle w_t, g_t \rangle - \langle w_t^*, g_t \rangle \right) \\ &= \sum_{t=1}^{T} \left(\langle w_1 - \eta \sum_{s \in [t-1] \setminus \mathcal{U}_t} g_s, g_t \rangle - \langle w_1 - \eta \sum_{s \in [t-1]} g_s, g_t \rangle \right) \\ &= \sum_{t=1}^{T} \langle \eta \sum_{s \in \mathcal{U}_t} g_s, g_t \rangle \\ &\leq \eta \sum_{t=1}^{T} \|g_t\| \sum_{s \in \mathcal{S}} \|g_s\| \end{split}$$

$$\mathsf{Regret}_{\mathcal{T}}(\boldsymbol{u}) \leq \frac{1}{2\eta} \|\boldsymbol{w}_1 - \boldsymbol{u}\|^2 + \frac{\eta}{2} \sum_{t=1}^{T} \|\boldsymbol{g}_t\|^2 + \eta \sum_{t=1}^{T} \|\boldsymbol{g}_t\| \sum_{s \in \mathcal{U}} \|\boldsymbol{g}_s\|$$

Distributed Online Convex Optimization

[Van der Hoeven, Hadiji, Van Erven, 2022]:

Given connection graph \mathcal{G} between N agents:

- 1: **for** t = 1, 2, ..., T **do**
- 2: Nature activates agent $I_t \in \{1, ..., N\}$
- 3: Active agent I_t predicts $w_t \in \mathcal{W}$
- 4: Nature reveals convex loss function $f_t: \mathcal{W} \to \mathbb{R}$ only to agent I_t
- 5: All agents can send a message to their neighbors in \mathcal{G}
- 6: end for

Agents cooperate to minimize joint regret:

$$\mathsf{Regret}_{\mathcal{T}}(oldsymbol{u}) = \sum_{t=1}^{\mathcal{T}} f_t(oldsymbol{w}_t) - \sum_{t=1}^{\mathcal{T}} f_t(oldsymbol{u})$$

Distributed Learning Causes Delayed Feedback

Incurring the maximum delay:

- ▶ If graph diameter is diam(\mathcal{G}), then it takes at most diam(\mathcal{G}) rounds to transmit each gradient g_t to all agents
- ▶ So each agent can run OGD with feedback delay $\tau = \text{diam}(\mathcal{G})$ to get

$$\mathsf{Regret}_{\mathcal{T}}(u) = O\Big(\mathsf{DG} \sqrt{\mathsf{diam}(\mathcal{G}) \mathcal{T}} \Big)$$

Distributed Learning Causes Delayed Feedback Incurring the maximum delay:

- ▶ If graph diameter is diam(\mathcal{G}), then it takes at most diam(\mathcal{G}) rounds to transmit each gradient g_t to all agents
- ▶ So each agent can run OGD with feedback delay $\tau = diam(\mathcal{G})$ to get

$$\mathsf{Regret}_{\mathcal{T}}(u) = O\Big(\mathsf{DG}\sqrt{\mathsf{diam}(\mathcal{G})\mathcal{T}}\Big)$$

This is suboptimal:

Two clusters that can be made arbitrarily far apart by extending the line that connects them

Distributed Learning Causes Delayed Feedback

Incurring the maximum delay:

- ▶ If graph diameter is diam(\mathcal{G}), then it takes at most diam(\mathcal{G}) rounds to transmit each gradient g_t to all agents
- ▶ So each agent can run OGD with feedback delay $\tau = diam(G)$ to get

$$\mathsf{Regret}_{\mathcal{T}}(u) = O\Big(\mathsf{DG}\sqrt{\mathsf{diam}(\mathcal{G})\mathcal{T}} \Big)$$

This is suboptimal:

Two clusters that can be made arbitrarily far apart by extending the line that connects them

Much better: Learn separately for each cluster:

$$\mathsf{Regret}_{\mathcal{T}}(u) = O\Big(\mathsf{DG}\sqrt{\mathsf{diam}(\mathcal{F}_1)\mathcal{T}} + \mathsf{DG}\sqrt{\mathsf{diam}(\mathcal{F}_2)\mathcal{T}} \Big)$$

But optimal clustering depends on activations. How do we learn it?

Learning the Best Graph Partition

Given collection $\mathcal Q$ of subgraphs of $\mathcal G$, a $\mathcal Q$ -partition is a partition $\{\mathcal F_1,\ldots,\mathcal F_r\}$ of $\mathcal G$ such that each $\mathcal F_i\in\mathcal Q$.

Theorem (Van der Hoeven, Hadiji, Van Erven, 2022)

Given any Q, there exists an algorithm that guarantees

$$\begin{split} \sum_{j=1}^{r} \mathsf{Regret}_{\mathcal{F}_{j}}(\boldsymbol{u}_{j}) \\ &= O\Big(\sum_{j=1}^{r} \|\boldsymbol{u}_{j}\| G\Big(\sqrt{\mathsf{diam}(\mathcal{F}_{j}) T_{j} \ln(1 + |\mathcal{Q}| \, \mathsf{diam}(\mathcal{F}_{j}) \|\boldsymbol{u}_{j}\| T_{j})}\Big)\Big) \end{split}$$

for any Q-partition $\{\mathcal{F}_1,\ldots,\mathcal{F}_r\}$ and any $u_1,\ldots,u_r\in\mathcal{W}$.

$$\mathsf{Regret}_{\mathcal{F}_j}(oldsymbol{u}) = \sum_{t: l_t \in \mathcal{F}_j} (f_t(oldsymbol{w}_t) - f_t(oldsymbol{u}))$$

Comparator-Adaptive Algorithms

Unbounded domain:

- ▶ Regret_T(u) = $O(DG\sqrt{T})$ when comparator $u \in W$ with diameter of W at most D.
- Mhat if we have no bound a priori on comparator norm ||u||, so we want to consider $\mathcal{W} = \mathbb{R}^d$?

Theorem (McMahan, Streeter, 2012)

Given G and any $\epsilon > 0$, there exists an online algorithm that achieves

$$\mathsf{Regret}_{\mathcal{T}}(u) = O(\|u\| G \sqrt{T \log \tfrac{(1+\|u\|)\mathcal{T}}{\epsilon}} + \epsilon G) \qquad \textit{for all } u \in \mathbb{R}^d.$$

► Essentially as good as **bounded domain** $W = \{w : ||w|| \le \frac{1}{2}D\}$ for **oracle choice** D = 2||u||.

Aggregation:

- lacktriangle Given K online learning algorithms with iterates $m{w}_t^1,\dots,m{w}_t^K$
- \triangleright Predict almost as well as the best one k^* :

$$\mathsf{Regret}_{\mathcal{T}}(u) \leq \mathsf{Regret}_{\mathcal{T}}^{k^*}(u) + \mathsf{overhead}$$

Aggregation:

- lacktriangle Given K online learning algorithms with iterates $m{w}_t^1,\dots,m{w}_t^K$
- \triangleright Predict almost as well as the best one k^* :

$$\mathsf{Regret}_{\mathcal{T}}(oldsymbol{u}) \leq \mathsf{Regret}_{\mathcal{T}}^{k^*}(oldsymbol{u}) + \mathsf{overhead}$$

Results: [Littlestone, Warmuth, 1994], [Vovk, 1998]: If $f_t(w_t^k) \in [a, b]$, then can achieve

$$overhead = O((b-a)\sqrt{T \ln K})$$

Aggregation:

- ▶ Given K online learning algorithms with iterates w_t^1, \ldots, w_t^K
- \triangleright Predict almost as well as the best one k^* :

$$\mathsf{Regret}_{\mathcal{T}}(u) \leq \mathsf{Regret}_{\mathcal{T}}^{k^*}(u) + \mathsf{overhead}$$

Results: [Littlestone, Warmuth, 1994], [Vovk, 1998]: If $f_t(w_t^k) \in [a, b]$, then can achieve

$$overhead = O((b-a)\sqrt{T \ln K})$$

[Cuskosky, 2019]: For comparator-adaptive methods with linear(ized) losses, simple iterate addition $w_t = \sum_{k=1}^K w_t^k$ achieves

$$\mathsf{overhead} = \sum_{k
eq k^*} \mathsf{Regret}_{\mathcal{T}}^k(\mathbf{0}) = \mathit{O}(\epsilon \mathit{KG}) \qquad \mathsf{think: } \epsilon \propto 1/\mathit{K}$$

Aggregation:

- Given K online learning algorithms with iterates w_t^1, \ldots, w_t^K
- \triangleright Predict almost as well as the best one k^* :

$$\mathsf{Regret}_{\tau}(u) \leq \mathsf{Regret}_{\tau}^{k^*}(u) + \mathsf{overhead}$$

Results: [Littlestone, Warmuth, 1994], [Vovk, 1998]: If $f_t(w_t^k) \in [a, b]$, then can achieve

overhead =
$$O((b-a)\sqrt{T \ln K})$$

[Cuskosky, 2019]: For comparator-adaptive methods with linear(ized) losses, simple iterate addition $w_t = \sum_{k=1}^K w_t^k$ achieves

$${\sf overhead} = \sum {\sf Regret}_T^k({f 0}) = O(\epsilon {\sf KG}) \qquad {\sf think:} \ \epsilon \propto 1/{\sf K}$$

Proof:
$$\sum_{t=1}^{T} \langle \boldsymbol{w}_{t}, \boldsymbol{g}_{t} \rangle - \langle \boldsymbol{u}, \boldsymbol{g}_{t} \rangle = \sum_{k=1}^{K} \sum_{t=1}^{T} \langle \boldsymbol{w}_{t}^{k}, \boldsymbol{g}_{t} \rangle - \sum_{t=1}^{T} \langle \boldsymbol{u}, \boldsymbol{g}_{t} \rangle$$
$$= \sum_{t=1}^{T} \left(\langle \boldsymbol{w}_{t}^{k^{*}}, \boldsymbol{g}_{t} \rangle - \langle \boldsymbol{u}, \boldsymbol{g}_{t} \rangle \right) + \sum_{k \neq k^{*}} \sum_{t=1}^{T} \left(\langle \boldsymbol{w}_{t}^{k}, \boldsymbol{g}_{t} \rangle - \langle \boldsymbol{0}, \boldsymbol{g}_{t} \rangle \right)$$

Learning the Graph Partition: Approach

Challenge:

- ► For each node i in the graph and cell $\mathcal{F}_j \in \mathcal{Q}$ that contains i, construct an algorithm $w_t^{(i,j)}$ that can handle delays $\tau = \text{diam}(\mathcal{F}_j)$
- lacktriangleright Then i aggregates iterates $oldsymbol{w}_t^{(i,j)}$ for all such j
- ▶ Problem: standard aggregation techniques with delays incur overhead that depends on maximum delay $\max_i \operatorname{diam}(\mathcal{F}_i)$

Learning the Graph Partition: Approach

Challenge:

- For each node i in the graph and cell $\mathcal{F}_j \in \mathcal{Q}$ that contains i, construct an algorithm $w_t^{(i,j)}$ that can handle delays $\tau = \text{diam}(\mathcal{F}_i)$
- lacktriangleright Then i aggregates iterates $oldsymbol{w}_t^{(i,j)}$ for all such j
- ▶ Problem: standard aggregation techniques with delays incur overhead that depends on maximum delay $\max_i \operatorname{diam}(\mathcal{F}_i)$

Our Solution:

- Make sure that w_t^(i,j) not only can handle delays, but are also comparator adaptive (new result)
- ▶ Then aggregation is possible using **iterate addition**, with overhead that depends on diam(\mathcal{F}_i) for optimal \mathcal{F}_i .
- Project w_t onto bounded W using black-box reduction by [Cutkosky, Orabona, 2018]

Summary

Online Convex Optimization

- ► Online gradient descent
- Delayed feedback
- Comparator-adaptive algorithms
- Aggregating multiple online methods
- New: Combined comparator-adaptive + delayed feedback

Distributed Online Convex Optimization

- Agents in a graph cooperate to minimize joint regret
- New: Learning the best graph partition

References

▶ D. van der Hoeven, H. Hadiji and T. van Erven. **Distributed Online Learning for Joint Regret with Communication Constraints**,
Proceedings of the 33rd International Conference on Algorithmic Learning Theory (ALT), no. 167, pp. 1003-1042, 2022.