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Example:

Electricity Forecasting

Every day t an electricity company needs to
predict how much electricity Y; is needed the
next day

Given feature vector X, € R9, predict
Y: = (ws, X;) with a linear model

Next day: observe Y;

Measure loss by f,(w,) = (Y: — Y;)? and
improve parameter estimates: w; — W1

2/15



Example: Electricity Forecasting

» Every day t an electricity company needs to
predict how much electricity Y; is needed the
next day

> Given feature vector X; € R¢, predict
Y: = (ws, X;) with a linear model
» Next day: observe Y;

> Measure loss by fi(w;) = (Y; — ¥;)? and
improve parameter estimates: w; — Wey1

Goal: Predict almost as well as the best possible parameters u:

T T
Regret ( Z — Z fi(u)
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B e np =

Online Convex Optimization

Parameters w take values in a convex domain W C R?
fort=1,2,..., T do
Learner predicts w; € W
Nature reveals convex loss function f; : W — R
end for

Viewed as a zero-sum game against Nature:

V' = minmax minmax --- minmax max Regret(u)
wr i w2 f wr  fr ueWw
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B e np =

Online Convex Optimization

Parameters w take values in a convex domain W C R?
fort=1,2,..., T do
Learner predicts w; € W
Nature reveals convex loss function f; : W — R
end for

Viewed as a zero-sum game against Nature:

V' = minmax minmax --- minmax max Regret(u)
wr i w2 f wr  fr ueWw

Make standard assumptions:
» Domain W compact with diameter at most D
> Bounded gradients: ||Vf(w:)| < G
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Online Gradient Descent

Wep1 = We — 771&Vft('wt)

Wil argmin ||lw — Wi |
wew

Theorem (Zinkevich, 2003)

Online gradient descent with n; = # guarantees

Regret - (u) < gDGﬁ

for any choices of Nature.

Without further assumptions, this is optimal up to the constant factor.
(If T is known in advance, the optimal constant is 1.)
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OGD Analysis

Simplifications: Assume no projections, constant learning rate:
Wey1 = we — NV (wy)

Proof:
1. Reduction to Linear Losses
By convexity of f;, abbreviating g = Vf;(w;):

fe(u)

t=1 t=1
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OGD Analysis

Simplifications: Assume no projections, constant learning rate:
w1 = wy — NV(w:)

Proof:
2. Analyzing Linear Losses, g; = Vf;(w;)
[weir = ul? = [we —u —nge|?

= lwe — u|® — 2n(we — u, g¢) + 07|l ge|?
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OGD Analysis

Simplifications: Assume no projections, constant learning rate:
Wiyl = Wt — UVft(’wt)
Proof:
2. Analyzing Linear Losses, g; = Vf;(w;)
lwers —ul® = [lwe —u —nge||?
= ||we — u|* = 2n(w: — u, gi) + 7’|l gl
&

1 1
(we,g1) = (w.g0) = 5 lwe = wlf = 5 wes — ul + Flge
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OGD Analysis

Simplifications: Assume no projections, constant learning rate:
Wiy = wy — NVi(we)

Proof:

2. Analyzing Linear Losses, g; = Vf;(w;)
[wepr — u|)? = [Jwe —u — nge|?

= [lwe —u|? = 2n(w: —u, ge) +7?[|gel?

|2

1 1
(w09 = (w,g0) = 5 lJwe = wlf = 5 wes = ul + F gl

T T
1 1 n
> ((werg0) — {.90)) = 5o lfwn —wll? = - lfwr o —wlf + 5 > lael?
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OGD Analysis

Simplifications: Assume no projections, constant learning rate:
Wiyl = W — ant(wt)

Proof:
2. Analyzing Linear Losses, g; = Vf(w;)

lwer — ull* = [[we —w —nge|®
= [lwe — wl® — 2n{we —u, ge) + 17°|ge ||

1 1 n
(we, ge) — (u, gr) = %Ilwt —ul? - %me —ul?+ S llgel®

t=1

.
1 " 1
Regret(u) < 2—77||w1 —ul®+ 5 tz:; lgel” < D2 EG T

T T
1 1 n
Z ( wy, gr) — (u 9t>) = %le - U||2 - %Hwﬂl - UH2 + 2 Z \9t||2
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OGD Analysis
Simplifications: Assume no projections, constant learning rate:
Wiyl = W — 77Vft(’wt)

Proof:
2. Analyzing Linear Losses, g; = Vf;(w;)

[werr — | = |lwe — u — nge|?
= |we — u|® — 2n(we — u, g¢) + 07| ge|®
1 2 1 2, 7N 2
(wt, gr) — (u,gt) = %”wt —ul® — %me —ul|* + *HgtH

T T
1 1
D ((wege) = (w.90) = oo = wlP = o Jwr i~ wlf + gg lgel?

t=1

N |

;
1 n 1 n
Regret < = —ul?+ = 2< - p? G*T
egretr(u) < 2nllwl ul” + > ;:1 llg:]|” < 2 +

D
=DGVT forn = ——=
VT

5/15



Online Convex Optimization with Delays

Delayed Feedback:
» Suppose g; not observed at end of round t, but later
> Let Uy C {1,...,t — 1} list missing gradients at start of round t
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Online Convex Optimization with Delays

Delayed Feedback:
» Suppose g; not observed at end of round t, but later
> Let Uy C {1,...,t — 1} list missing gradients at start of round t

Theorem (McMahan, Streeter, 2014)

Online gradient descent (without projections and with n, = n) using only
the available gradients guarantees

-
1 n
Regretr () < o lwn —ul’ + 3 3 (llgel? +2lgel 3 losI)
t=1 SEU

1
<D+ 2A+27)G2T  ifl] <7

2n 2

D
_D6/A+20T forn=——2
(1+27) 1= e/t
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Delayed Feedback Analysis

1. Reduction to linear losses

2. Regret of OGD with delayed feedback w; is at most:
> Regret of oracle OGD wy; that observes all gradients
> + differences in linear losses between w; and w;:

ZT: ( wt, gr) wtagt>)

t=1

t=1 se[t—1\U; s€[t—1]

;

> ((wl Ny g —(wi—n) 957gt>)
-

= Z<77 Z gsagt>

t=1 seU;

< nz lgell D llgs|

seU;

t=1 selU; 7/15

.
1 n
Regrety(u) < %Ilun —ul® + 5 Z llgell” + nz llg:ll Z llgs]|
t=1



Distributed Online Convex Optimization
[Van der Hoeven, Hadiji, Van Erven, 2022]:

Given G between N agents:
1: fort=1,2,..., T do
Nature activates agent /; € {1,..., N}

Active agent /; predicts w: € W

2

3

4:  Nature reveals convex loss function f; : W — R

5. All agents can send a message to their neighbors in G
6:

end for

Agents cooperate to minimize joint regret:

T T
Regret(u) = Z fe(w:) — Z fe(u)
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Distributed Learning Causes Delayed Feedback
Incurring the maximum delay:
> If is diam(G), then it takes at most diam(G) rounds
to transmit each gradient g; to all agents
> So each agent can run OGD with feedback delay 7 = diam(G) to get

Regret,(u) = O(DG\/W)
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> If is diam(G), then it takes at most diam(G) rounds
to transmit each gradient g; to all agents
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Regret(u) = O(DG\/W)

This is suboptimal:

cluster F; cluster />

@ active agent
O inactive agent

Two clusters that can be made arbitrarily far apart
by extending the line that connects them
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Distributed Learning Causes Delayed Feedback
Incurring the maximum delay:

> If is diam(G), then it takes at most diam(G) rounds
to transmit each gradient g; to all agents
> So each agent can run OGD with feedback delay 7 = diam(G) to get

Regret(u) = (DG\/(W)

This is suboptimal:

cluster F; cluster />

@ active agent
O inactive agent

Two clusters that can be made arbitrarily far apart
by extending the line that connects them

Much better: Learn separately for each cluster:

Regret+(u (DG\/dlam(}'l T + DG+/diam(F) )

But optimal clustering depends on activations. How do we learn it?
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Learning the Best Graph Partition

Given collection Q of subgraphs of G, a is a partition
{F1,...,F;} of G such that each F; € Q.

Theorem (Van der Hoeven, Hadiji, Van Erven, 2022)

Given any Q, there exists an algorithm that guarantees

Z Regret 7 (u;)

Jj=1

= O(Z ||'u,J||G(\/d|am i) TiIn(1 + | Q| diam( J)||uj||TJ)))

for any Q-partition {Fy,...,F,;} and any us,...,u, € W.

Regret z (u) = Z (fi(w;) — fi(u))

t:hEeF;
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Comparator-Adaptive Algorithms

Unbounded domain:
> Regret(u) = O(DG+/T) when comparator w € W with diameter
of W at most D.
» What if we have no bound a priori on comparator norm ||lul|, so
we want to consider W = R9?

Theorem (McMahan, Streeter, 2012)

Given G and any € > 0, there exists an online algorithm that achieves
Regret+(u) = O(||u||Gy/ T log w + €G) for all u € RH.

> Essentially as good as bounded domain W = {w : [|w| < 1D} for
oracle choice D = 2|u||.
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Aggregating Multiple Online Methods
Aggregation:
» Given K online learning algorithms with iterates w}, ... wK
> Predict almost as well as the best one k*:

Regret,(u) < Regret (u) + overhead
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Aggregating Multiple Online Methods
Aggregation:
> Given with iterates wi, ..., wk
> Predict almost as well as the best one k*:

Regret,(u) < Regret (u) + overhead

Results: [Littlestone, Warmuth, 1994], [Vovk, 1998]: If fi(w¥) € [a, b],
then can achieve

overhead = O((b— a)V T In K)

12/15



Aggregating Multiple Online Methods
Aggregation:
> Given with iterates w
» Predict almost as well as the best one k*:

L wk
Regret,(u) < Regret (u) + overhead

Results: [Littlestone, Warmuth, 1994], [Vovk, 1998]: If fi(w¥) € [a, b],
then can achieve

overhead = O((b— a)V T In K)

[Cuskosky, 2019]: For comparator-adaptive methods with linear(ized)
losses, simple iterate addition w; = Zszl w¥ achieves

overhead = Z Regret (0) = O(¢KG) think: e x 1/K
P
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Aggregating Multiple Online Methods
Aggregation:
> Given with iterates w
» Predict almost as well as the best one k*:

L wk
Regret,(u) < Regret (u) + overhead
Results: [Littlestone, Warmuth, 1994], [Vovk, 1998]: If fi(w¥) € [a, b],

then can achieve

overhead = O((b— a)V T In K)

[Cuskosky, 2019]: For comparator-adaptive methods with linear(ized)
losses, simple iterate addition w; = Zszl w¥ achieves
overhead = Z Regret (0) = O(¢KG) think: e x 1/K
Ktk
T K T T
D (we,ge) = (u,g0) =Y > (wh,ge) — > (u,g¢)

Proof: t=1 k=1 t=1 t=1
T

i(’wt 90 = (wgd) + > Y ((whi g - (0,90)

t=1 k#k* t=1 12/15



Learning the Graph Partition: Approach

Challenge:
» For each node i in the graph and cell F; € Q that contains i,
construct an algorithm wg"J) that can handle delays 7 = diam(Fj)
» Then i aggregates iterates wgi’j) for all such j

» Problem: standard aggregation techniques with delays incur
overhead that depends on max; diam(F;)
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Learning the Graph Partition: Approach

Challenge:
» For each node i in the graph and cell F; € Q that contains i,
construct an algorithm w{"?) that can handle delays T = diam(F)
» Then i aggregates iterates wgi’j) for all such j

» Problem: standard aggregation techniques with delays incur
overhead that depends on max; diam(F;)

Our Solution:

» Make sure that wgi’j) not only can handle delays, but are also
comparator adaptive (new result)

» Then aggregation is possible using , with overhead
that depends on diam(F;) for optimal ;.

» Project w; onto bounded W using black-box reduction by
[Cutkosky, Orabona, 2018]
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Summary

Online Convex Optimization
» Online gradient descent
» Delayed feedback
» Comparator-adaptive algorithms
> Aggregating multiple online methods
» New: Combined comparator-adaptive + delayed feedback

Distributed Online Convex Optimization
» Agents in a graph cooperate to minimize joint regret
> New: Learning the best graph partition
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