
The Mathematics of Machine Learning

Homework Set 1

Due 28 February 2024 before 13:00
via Canvas

You are allowed to work on this homework in pairs. One person per pair
submits the answers via Canvas. Make sure to put both names on the sub-
mission. Write your answers to theory exercises in LaTeX; for programming
exercises submit a Jupyter notebook.

1 Theory Exercises

1. [4 pt]

(a) [2 pt] What is the Bayes-optimal predictor fB for binary classifica-
tion with Y ∈ {−1,+1} and the following cost-sensitive loss, which
considers a false negative worse than a false positive?

L(Y, Ŷ ) =


0 if Ŷ = Y ,

1 if Y = −1 and Ŷ = +1,

10 if Y = +1 and Ŷ = −1.

(b) [2 pt] For least-squares regression with the absolute error loss1,

L(Y, Ŷ ) = |Y − Ŷ |,

the Bayes optimal predictor is such that fB(X) is any median of Y
under P ∗(Y |X). This follows from the following lemma:

Lemma 1. For any random variable Y with distribution P ,

E[|Y − c|]

is minimized in c by any median of P .

1NB This is a common alternative to the squared error loss L(Y, Ŷ ) = (Y − Ŷ )2 that we
considered in the lecture. The absolute error is less sensitive to large errors, which may be an
advantage if there may be outliers (extreme points with small probability).
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Prove this lemma. You may use without proof that at least one
median m always exists.
Hint 1: The median of any distribution P is any point m such that

P (Y ≤ m) ≥ 1

2
and P (Y ≥ m) ≥ 1

2
.

Hint 2: By symmetry, it is sufficient to show that if c < m and m
is a median of P , then

E[|Y − c|] ≥ E[|Y −m|].

(You do not have to prove this.)
Hint 3: Let 1{A} be the indicator for any event A, which is 1 if A
holds and 0 otherwise. Show that, if c < m, then

E[|Y − c|]− E[|Y −m|] = E[(c−m)1{Y ≤ c}]
+ E[(2Y −m− c)1{c < Y < m}]
+ E[(m− c)1{Y ≥ m}],

and find a simpler lower bound on this expression using that Y ≥ c
in the middle case.
Hint 4: Use the properties of the median to show that the lower bound
from Hint 3 is non-negative.

2 Programming Exercise

The following programming exercise is to be implemented in Python, using a
Jupyter notebook. As a starting point, you may use the notebook Homework1-start.ipynb,
which is available from the course website.

Setup The notebook simulates a training set of size N = 100 and a test set of
size 10 000 for binary classification with X ∈ R2 and Y ∈ {−1,+1} by sampling
from the distribution P ∗ defined via:

P ∗(Y = +1) = 0.8

P ∗(X|Y ) = N
((

Y
−Y

)
, 1.3I

)
,

where N (µ,Σ) denotes a multi-variate normal distribution with mean µ and
co-variance matrix Σ.

The notebook further plots the data (both training and test sets together)
and shows how to apply a 15-nearest neighbor classifier to it. It further demon-
strates how to evaluate the density of a multi-variate normal distribution.
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2. [4 pt]

(a) [2 pt] Similar to Figure 2.4 in the book, plot the error = average 0/1-
loss both on the training set and on the test set for the K-nearest
neighbor classifier as a function of K = 40, . . . , 1.
Hint: if you are using pyplot for plotting, then plt.gca().invert xaxis()

reverses the direction of the horizontal axis, so you can make it de-
creasing in K.

(b) [2 pt] Derive a way to compute the Bayes-optimal classifier fB for
the 0/1-loss, and add its average error on the test set as a horizontal
line to the plot.
Hint to calculate fB: For any given x, we need to determine whether
P ∗(Y = +1|X = x) ≥ P ∗(Y = −1|X = x) or not. Since X is a
continuous variable, we need to interpret this in terms of densities to
make sense. Then, by Bayes’ rule,

P ∗(Y = y|X = x) =
P ∗(Y = y)ϕ(x;µy,Σ)∑

y′∈{−1,+1} P
∗(Y = y′)ϕ(x;µy′ ,Σ)

,

where ϕ(x;µ,Σ) is the density of N (µ,Σ) at point x, µy =

(
y
−y

)
and Σ = 1.3I.
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