The Mathematics of Machine Learning
Homework Set 1

Due 28 February 2024 before 13:00

via Canvas

You are allowed to work on this homework in pairs. One person per pair
submits the answers via Canvas. Make sure to put both names on the sub-
mission. Write your answers to theory exercises in LaTeX; for programming
exercises submit a Jupyter notebook.

1 Theory Exercises
1. [4 pt]

(a) [2 pt] What is the Bayes-optimal predictor fg for binary classifica-
tion with Y € {—1,+1} and the following cost-sensitive loss, which
considers a false negative worse than a false positive?

0 fy=Y,
LY,Y)={1 ifY=—landY =+1,
10 fY=+landY = —1.
(b) [2 pt] For least-squares regression with the absolute error losﬂ

the Bayes optimal predictor is such that fg(X) is any median of ¥
under P*(Y'|X). This follows from the following lemma:

Lemma 1. For any random variable Y with distribution P,
E[lY —cl]

s minimized in ¢ by any median of P.

INB This is a common alternative to the squared error loss L(Y,Y) = (Y — Y)2 that we
considered in the lecture. The absolute error is less sensitive to large errors, which may be an
advantage if there may be outliers (extreme points with small probability).



Prove this lemma. You may use without proof that at least one
median m always exists.
Hint 1: The median of any distribution P is any point m such that

1
2

P(Y <m)> and PY>m)>-.

N —

Hint 2: By symmetry, it is sufficient to show that if ¢ < m and m
18 a median of P, then

E[lY —c] 2 E[[Y — m]].

(You do not have to prove this.)
Hint 3: Let 1{A} be the indicator for any event A, which is 1 if A
holds and 0 otherwise. Show that, if ¢ < m, then

E[lY — ¢l = E[]Y —m[] = E[(c = m)1{Y < c}]
+E[2Y —m —)1{c <Y < m}]
+E[(m — I{Y = m}],

and find a simpler lower bound on this expression using that Y > ¢
in the middle case.

Hint 4: Use the properties of the median to show that the lower bound
from Hint 8 is non-negative.

2 Programming Exercise

The following programming exercise is to be implemented in Python, using a
Jupyter notebook. As a starting point, you may use the notebook Homeworki-start. ipynb,
which is available from the course website.

Setup The notebook simulates a training set of size N = 100 and a test set of
size 10000 for binary classification with X € R? and Y € {—1,+1} by sampling
from the distribution P* defined via:

P*(Y =+1)=0.8

PH(X|Y) :N( <_YY> ,1.31),

where N (p, X) denotes a multi-variate normal distribution with mean p and
co-variance matrix X.

The notebook further plots the data (both training and test sets together)
and shows how to apply a 15-nearest neighbor classifier to it. It further demon-
strates how to evaluate the density of a multi-variate normal distribution.



2. [4 pt)

(a) [2 pt] Similar to Figure 2.4 in the book, plot the error = average 0/1-

loss both on the training set and on the test set for the K-nearest
neighbor classifier as a function of K =40,...,1.

Hint: if you are using pyplot for plotting, then plt.gca(). invert_zazis ()
reverses the direction of the horizontal axis, so you can make it de-
creasing in K.

[2 pt] Derive a way to compute the Bayes-optimal classifier fg for
the 0/1-loss, and add its average error on the test set as a horizontal
line to the plot.

Hint to calculate fg: For any given x, we need to determine whether
P*(Y = +1|X = 2) > P(Y = —=1|X = z) or not. Since X is a
continuous variable, we need to interpret this in terms of densities to
make sense. Then, by Bayes’ rule,

\ P(Y = y)o(; py, 2)
P (Y =yX=2)=
( Y %) Yyef-1,413 PV =9)o(x; py, x)’

where ¢(z; 1, X) is the density of N(u, X) at point x, p, = <_yy>
and ¥ = 1.31.
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