The Mathematics of Machine Learning Homework Set 2

Due 6 March 2024 before 13:00 via Canvas

You are allowed to work on this homework in pairs. One person per pair submits the answers via Canvas. Make sure to put both names on the submission.

1 Theory Exercises

1. [4 pt] Consider linear regression. For each of the following data sets, determine whether the least squares solution

$$\underset{\beta_0,\beta}{\operatorname{arg\,min}} \quad \sum_{i=1}^{N} (Y_i - X_i^{\top}\beta - \beta_0)^2$$

is unique:

(a)
$$T = (X_1, Y_1), \dots, (X_3, Y_3) = \left(\binom{2}{3}, 5\right), \left(\binom{3}{4}, 7\right), \left(\binom{4}{5}, 8\right)$$

(b) $T = (X_1, Y_1), \dots, (X_3, Y_3) = \left(\binom{2}{3}, -1\right), \left(\binom{2}{4}, -2\right), \left(\binom{2}{5}, -3\right)$

2. [4 pt] A common step to prepare data before applying any machine learning method is to center the data points around their mean:

$$X'_i = X_i - \bar{x}, \qquad \qquad Y'_i = Y_i - \bar{y}$$

where $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} X_i$ is the mean of the feature vectors, and $\bar{y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$ is the mean of the response vectors in the training data. In preparation for lecture 4, we will consider estimators of the form

$$(\hat{\beta}_0, \hat{\beta}) = \underset{(\beta_0, \beta)}{\operatorname{arg\,min}} \left(\sum_{i=1}^N (Y_i - X_i^\top \beta - \beta_0)^2 + \lambda \operatorname{pen}(\beta) \right), \tag{1}$$

where $\lambda \geq 0$ is a fixed number and pen is a function of β that does not depend on β_0 . (Note that we recover least squares for $\lambda = 0$.) Now

consider the following alternative criterion on the centered data, in which we only solve for β :

$$\hat{\beta} = \arg\min_{\beta} \Big(\sum_{i=1}^{N} (Y'_i - (X'_i)^{\top} \beta)^2 + \lambda \operatorname{pen}(\beta) \Big).$$
(2)

Show that (2) gives the same solution for $\hat{\beta}$ as (1). Hint 1: Note that we can write the minimization problem in (1) as

$$\min_{\beta} \min_{\beta_0} \Big(\sum_{i=1}^N (Y_i - X_i^\top \beta - \beta_0)^2 + \lambda \mathrm{pen}(\beta) \Big).$$

Hint 2: Solve the inner minimization over β_0 for any fixed β and plug the solution back in to eliminate β_0 . Show that the remaining optimization over β is equivalent to (2).