The Mathematics of Machine Learning Homework Set 2

Due 6 March 2024 before 13:00
via Canvas

You are allowed to work on this homework in pairs. One person per pair submits the answers via Canvas. Make sure to put both names on the submission.

1 Theory Exercises

1. [4 pt] Consider linear regression. For each of the following data sets, determine whether the least squares solution

$$
\underset{\beta_{0}, \beta}{\arg \min } \sum_{i=1}^{N}\left(Y_{i}-X_{i}^{\top} \beta-\beta_{0}\right)^{2}
$$

is unique:
(a) $T=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{3}, Y_{3}\right)=\left(\binom{2}{3}, 5\right),\left(\binom{3}{4}, 7\right),\left(\binom{4}{5}, 8\right)$
(b) $T=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{3}, Y_{3}\right)=\left(\binom{2}{3},-1\right),\left(\binom{2}{4},-2\right),\left(\binom{2}{5},-3\right)$
2. [4 pt] A common step to prepare data before applying any machine learning method is to center the data points around their mean:

$$
X_{i}^{\prime}=X_{i}-\bar{x}, \quad Y_{i}^{\prime}=Y_{i}-\bar{y}
$$

where $\bar{x}=\frac{1}{N} \sum_{i=1}^{N} X_{i}$ is the mean of the feature vectors, and $\bar{y}=$ $\frac{1}{N} \sum_{i=1}^{N} Y_{i}$ is the mean of the response vectors in the training data.
In preparation for lecture 4 , we will consider estimators of the form

$$
\begin{equation*}
\left(\hat{\beta}_{0}, \hat{\beta}\right)=\underset{\left(\beta_{0}, \beta\right)}{\arg \min }\left(\sum_{i=1}^{N}\left(Y_{i}-X_{i}^{\top} \beta-\beta_{0}\right)^{2}+\lambda \operatorname{pen}(\beta)\right), \tag{1}
\end{equation*}
$$

where $\lambda \geq 0$ is a fixed number and pen is a function of β that does not depend on β_{0}. (Note that we recover least squares for $\lambda=0$.) Now
consider the following alternative criterion on the centered data, in which we only solve for β :

$$
\begin{equation*}
\hat{\beta}=\underset{\beta}{\arg \min }\left(\sum_{i=1}^{N}\left(Y_{i}^{\prime}-\left(X_{i}^{\prime}\right)^{\top} \beta\right)^{2}+\lambda \operatorname{pen}(\beta)\right) . \tag{2}
\end{equation*}
$$

Show that (2) gives the same solution for $\hat{\beta}$ as (1).
Hint 1: Note that we can write the minimization problem in (1) as

$$
\min _{\beta} \min _{\beta_{0}}\left(\sum_{i=1}^{N}\left(Y_{i}-X_{i}^{\top} \beta-\beta_{0}\right)^{2}+\lambda \operatorname{pen}(\beta)\right)
$$

Hint 2: Solve the inner minimization over β_{0} for any fixed β and plug the solution back in to eliminate β_{0}. Show that the remaining optimization over β is equivalent to (2).

