
The Mathematics of Machine Learning

Homework Set 5

Due Wednesday 17 April 2024 before 13h00
via Canvas

You are allowed to work on this homework in pairs. One person per pair
submits the answers via Canvas. Make sure to put both names on the submis-
sion.

1 Preparation for Support Vector Machines

In this homework you will prepare for the upcoming lectures about support
vector machines.

For both questions, consider binary classification with Y ∈ {−1,+1} and
X ∈ Rd. For any β ∈ Rd, β0 ∈ R, the corresponding linear classifier classifies a
new input X according to Ŷ = sign(fβ,β0(X)), where

fβ,β0(X) = X⊤β + β0.

The hinge loss (used in SVMs) and logistic loss (used in logistic regression) are
defined as follows:

Lhinge(Y, f(X)) = max{0, 1− Y f(X)} (hinge loss)

Llogistic(Y, f(X)) = ln
(
1 + e−Y f(X)

)
(logistic loss).

1. [2 pt] Show that, for any linear classifier fβ,β0 and point x∗, the distance

of x∗ to the decision boundary B = {x | fβ,β0
(x) = 0} is

|fβ,β0
(x∗)|

∥β∥ .

Hint: There are different ways to prove this. One approach is as follows:

(a) Show that β is a normal vector to the decision boundary. That is,
for any a, b ∈ B, the vector β is orthogonal to the vector (b− a), i.e.
(b− a)⊤β = 0.

(b) Let x′ be the projection of x∗ onto B. Then, since β is a normal
vector of B (and B is a d− 1-dimensional hyperplane), we must have

x′ = x∗ + α
β

∥β∥
,

where |α| is the distance of x∗ to B. Plug this into fβ,β0
(x′) = 0

(because x′ ∈ B) and solve in terms of α.
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2. [2 pt] Minimizing some (surrogate) loss function using empirical risk min-
imization can be viewed as an attempt to approximate the Bayes-optimal
predictor for that loss function. We can therefore get more insight into
the difference between the hinge loss and the logistic loss by comparing
the corresponding Bayes optimal classifiers.
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Figure 1: Bayes-optimal classifiers for hinge loss and logistic loss

(a) Show that the Bayes optimal classifier for hinge loss is

fBayes(X) = sign
(
Pr(Y = +1 | X)− 1/2

)
.

Hint 1: Abbreviate p = Pr(Y = +1 | X) to shorten your notation.
Hint 2: Note that

E
Y
[max{0, 1− Y Ŷ }|X] = pmax{0, 1− Ŷ }+ (1− p)max{0, 1 + Ŷ }.

(b) Show that the Bayes optimal classifier for logistic loss is

fBayes(X) = ln
(Pr(Y = +1 | X)

Pr(Y = −1 | X)

)
.

See Figure 1 for a plot of the two Bayes optimal functions. Note that the
signs of both Bayes optimal classifiers agree, so they will both lead to the
same classifications. The difference is that the Bayes optimal decision for
the hinge loss is exactly equal to the Bayes optimal decision for the 0/1-
loss (corresponding to the idea that SVMs try to estimate the optimal
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decision boundary directly), whereas the values for logistic loss provide
a smooth interpolation between positive and negative values, which does
not have a jump at Pr(Y = +1 | X) = 1/2.
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