The Mathematics of Machine Learning Homework Set 6

Due 24 April 2024 before 13:00
via Canvas

You are allowed to work on this homework in pairs. One person per pair submits the answers via Canvas. Make sure to put both names on the submission.

1 Introduction

In lecture 1 we saw the benefits of transforming a single feature $x \in \mathbb{R}$ into $\tilde{x}=\left(1, x, x^{2}, x^{3}, \ldots, x^{d}\right) \in \mathbb{R}^{d+1}$. Then a linear function of \tilde{x} is a d-th degree polynomial of x. In the next lecture, we will use the idea of transforming features to greatly extend the power of support vector machines. In general let $\tilde{x}=h(x)$ be an arbitrary transformation of the original features. We even want to allow h to construct an infinite number of features. In this homework, we will develop the mathematical tools to make this possible. What we need is to construct a suitable Hilbert space \mathcal{H} and let h be a map from $x \in \mathcal{X}$ to an element of \mathcal{H}. We will be interested in transformations h such that the inner product after applying h,

$$
\left\langle h(x), h\left(x^{\prime}\right)\right\rangle,
$$

comes out as a nice function of x and x^{\prime}. In fact, given a function $k\left(x, x^{\prime}\right)$, which we will call a kernel function, we want to know whether there exist an \mathcal{H} and h such that

$$
\left\langle h(x), h\left(x^{\prime}\right)\right\rangle=k\left(x, x^{\prime}\right) \quad \text { for all } x, x^{\prime} \in \mathcal{X}
$$

The goal of this homework is to show that this is always possible as soon as k satisfies a few weak conditions.

2 Understanding SVMs, Part II

A kernel function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called positive semi-definite if, for any finite set of inputs $x_{1}, \ldots, x_{m} \in \mathcal{X}$, the matrix $K \in \mathbb{R}^{m \times m}$ with entries $K_{i, j}=$ $k\left(x_{i}, x_{j}\right)$ is positive semi-definite. That is, K should be symmetric and, for any $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$,

$$
\sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

In particular, symmetry of K implies that k should be symmetric.
Given any positive semi-definite kernel function k, the goal of this homework is to construct a Hilbert space \mathcal{H} and a mapping $h: \mathcal{X} \rightarrow \mathcal{H}$ from the original space of features to this Hilbert space, where k corresponds to the inner product in \mathcal{H} :

$$
k\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle .
$$

2.1 Definition of the Reproducing Kernel Hilbert Space

The elements of \mathcal{H} will consist of functions $f: \mathcal{X} \rightarrow \mathbb{R}$. In particular, our mapping h will produce the following functions:

$$
h(x):=k(\cdot, x) \quad \text { for any } x \in \mathcal{X}
$$

These functions generate a linear space $\mathcal{L} \subset \mathcal{H}$ that contains all finite linear combinations, i.e. all functions of the form:

$$
f(\cdot)=\sum_{i=1}^{m} \alpha_{i} k\left(\cdot, x_{i}\right)
$$

for any $x_{1}, \ldots, x_{m} \in \mathcal{X}$, any $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ and any positive integer m. For any two functions $f, g \in \mathcal{L}$ we know there must exist (possibly non-unique) representations

$$
f(\cdot)=\sum_{i=1}^{m} \alpha_{i} k\left(\cdot, x_{i}\right), \quad g(\cdot)=\sum_{j=1}^{k} \beta_{j} k\left(\cdot, x_{j}^{\prime}\right)
$$

for some $\alpha_{i} \in \mathbb{R}, \beta_{i} \in \mathbb{R}, x_{1}, \ldots, x_{m}, x_{1}^{\prime}, \ldots, x_{k}^{\prime} \in \mathcal{X}$. The inner product between $f, g \in \mathcal{L}$ is then defined as

$$
\langle f, g\rangle:=\sum_{i=1}^{m} \sum_{j=1}^{k} \alpha_{i} \beta_{j} k\left(x_{i}, x_{j}^{\prime}\right)
$$

We will show below that this inner product gives the same value for all possible representations of f and g, so it is well-defined. We will also show that it satisfies all the properties that are required of an inner product. In fact, the inner product also satisfies one more property: for all functions $f \in \mathcal{L}$,

$$
\langle k(\cdot, x), f\rangle=f(x) \quad \text { and, in particular, } \quad\left\langle k(\cdot, x), k\left(\cdot, x^{\prime}\right)\right\rangle=k\left(x, x^{\prime}\right)
$$

This is called the reproducing property of k and k is called a reproducing kernel. Having established all these properties, there is one property of Hilbert spaces that \mathcal{L} may not satisfy: it may not be complete. The Hilbert space \mathcal{H} is therefore defined as the completion of \mathcal{L} in the metric $d(f, g):=\|f-g\|:=$ $\sqrt{\langle f-g, f-g\rangle}$. As a result of the reproducing property, this \mathcal{H} is called a reproducing kernel Hilbert space (RKHS).

3 Questions: Verifying All Required Properties

We proceed to verify that the definitions above satisfy all requirements.

1. [1 pt] Show that the inner product does not depend on the choice of representation for f and g by showing that

$$
\sum_{i=1}^{m} \sum_{j=1}^{k} \alpha_{i} \beta_{j} k\left(x_{i}, x_{j}^{\prime}\right)=\sum_{j=1}^{k} \beta_{j} f\left(x_{j}^{\prime}\right)=\sum_{i=1}^{m} \alpha_{i} g\left(x_{i}\right)
$$

(The first identity shows that the inner product does not depend on the representation of f; the second identity that it does not depend on the representation of g.)

Then verify the reproducing property:
2. [1 pt] Prove the reproducing property.

Finally, show that the inner product satisfies all the requirements to make \mathcal{L} an inner product space:
3. [1 pt] Symmetry: $\langle f, g\rangle=\langle g, f\rangle$ for any $f, g \in \mathcal{L}$.
4. [1 pt] Linearity: $\left\langle\alpha_{1} f_{1}+\alpha_{2} f_{2}, g\right\rangle=\alpha_{1}\left\langle f_{1}, g\right\rangle+\alpha_{2}\left\langle f_{2}, g\right\rangle$ for any $f_{1}, f_{2}, g \in$ $\mathcal{L}, \alpha_{1}, \alpha_{2} \in \mathbb{R}$.
5. [1 pt] Positive semi-definiteness: $\langle f, f\rangle \geq 0$.
6. [1 pt] If $\langle f, f\rangle=0$, then $f=0$ (i.e. $f(x)=0$ for all $x \in \mathcal{X}$).

Hint: Combine the reproducing property with the Cauchy-Schwarz inequality $\langle f, g\rangle^{2} \leq\langle f, f\rangle\langle g, g\rangle$, which is proved below in the appendix.
This homework is based on the review paper by Hofmann et al. [2008], which contains a great overview of SVMs and other kernel methods.

References

T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel methods in machine learning. The Annals of Statistics, 36(3):1171-1220, 2008. doi: 10.1214/009053607000000677. URL https://doi.org/10.1214/ 009053607000000677.

A A Proof of Cauchy-Schwarz Using Only the Proved Properties

The hint in Question 6 suggests to use the Cauchy-Schwarz inequality. For this to be allowed, we have to verify that Cauchy-Schwarz follows from the properties already established in the preceding questions, which is what will be shown here.

It will be convenient to use the shorter notation for norms: $\|f\|:=\sqrt{\langle f, f\rangle}$, which are well-defined and non-negative by positive semi-definiteness. Then Cauchy-Schwarz requires us to show that

$$
\langle f, g\rangle^{2} \leq\|f\|^{2}\|g\|^{2}
$$

To prove this, consider first the case that at least one of the norms $\|f\|$ and $\|g\|$ is strictly positive. By symmetry, we may assume that this is the case for the norm of f, i.e. $\|f\|>0$. It then follows from linearity that

$$
\|f\|^{2}\|g\|^{2}-\langle f, g\rangle^{2}=\frac{\| \| f\left\|^{2} g-\langle f, g\rangle f\right\|^{2}}{\|f\|^{2}} \geq 0
$$

where the inequality holds by non-negativity of the norms.
Alternatively, consider the case that $\|f\|=\|g\|=0$. Then

$$
\begin{aligned}
& 0 \leq\|f-g\|^{2}=\|f\|^{2}-2\langle f, g\rangle+\|g\|^{2}=-2\langle f, g\rangle \quad \Rightarrow \quad\langle f, g\rangle \leq 0 \\
& 0 \leq\|f+g\|^{2}=\|f\|^{2}+2\langle f, g\rangle+\|g\|^{2}=2\langle f, g\rangle \quad \Rightarrow \quad-\langle f, g\rangle \leq 0 .
\end{aligned}
$$

Combining these two cases, we get $\langle f, g\rangle=0$, so

$$
\langle f, g\rangle^{2}=0=\|f\|^{2}\|g\|^{2}
$$

as required.

