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January 15, 2008

Grading works as follows: You start with 1 point, and for each of

the 12 subquestions you can get 3/4 points. Partial points may be

awarded for partially correct answers.

1. (a)
k 1 3 5

Instance 1 White Black Black
Instance 2 White White Black

(b) Representing x1 by assigning integers to Black, White and Brown
does not work, because the difference between these integers would
be meaningless. One way to represent x1 would be as

Value Black White Brown

Representation





1
0
0









0
1
0









0
0
1





The other feature, x2 can just be represented by its own value. The
feature vector x can now be composed from the three components
of x1 and one component for x2.

For example, x1 = ‘Brown’ and x2 = 32 would give x =









0
0
1
32









.

(c) The influence of x2 on the Euclidean distance (and therefore on
the classifications of the algorithm) would decrease.

(d) This will be hard for the 1-nearest neighbour algorithm: Think
of the decision boundary for 1-nearest neighbour from class or in
Figure 8.1 from Mitchell. In the chess board case the algorithm
will learn patches of Black and White. These patches only become
as fine-grained as the chess board when we’ve seen all possible
inputs.

Another way to see this is by noting that the assumption in 1-
nearest neighbour that the target function doesn’t vary too much
locally is violated.
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2. (a) These examples would be classified correctly by using the weights
for the and-function. Figure 1 shows the decision boundary for
w0 = −0.8, w1 = 0.5 and w2 = 0.5.
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Figure 1: Decision boundary for perceptron that classifies all examples cor-
rectly.

(b) Examples that are not linearly separable can never be classified
correctly by the perceptron. So for example if the target function
is xor, a perceptron will always make at least one mistake if we
see all possible inputs:

D =
y 1 1 −1 −1
x1 −1 1 1 −1
x2 1 −1 1 −1

3. Taking large steps initially is useful to get near the minimum quickly.
Smaller steps later are necessary to avoid walking past the minimum.

4. (a) Naive Bayes would classify the new example as True:

P (X1 = True | Y = False)P (X2 = True | Y = False)P (Y = False)

= 0 · 0 ·
1

3
= 0

< P (X1 = True | Y = True)P (X2 = True | Y = True)P (Y = True)

=
1

2
·
1

2
·
2

3
=

1
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(b) If there are many features, then we will not have seen (many)
examples of the feature values that we are interested in together,
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so we cannot get a reliable estimate of the required probabilities.
Therefore some assumption or preference bias is necessary. We will
typically have seen the right feature values for each feature sepa-
rately, however. Therefore the independence assumption made by
naive Bayes helps us to estimate the required probabilities.

5. (a) The model M = {P1, P2}, where

P1(yn = 1) = 0.9, P2(yn = 1) = 0.1 if n ≤ 3,

P2(yn = 1) = 0.9 if n > 3.

(b) Maximum likelihood would select P2:

P1(D) = (9/10)5(1/10)3 < (9/10)6(1/10)2 = P2(D).

(c) MAP with the given prior would select P1:

π(θ = 1 | D) =
P1(D)π(1)

PBayes(D)
=

(9/10)5(1/10)3 · 99/100

PBayes(D)

=
95 · 99/1010

PBayes(D)

π(θ = 2 | D) =
P2(D)π(2)

PBayes(D)
=

(9/10)6(1/10)2 · 1/100

PBayes(D)
=

96/1010

PBayes(D)

<
95 · 99/1010

PBayes(D)
= π(θ = 1 | D)
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