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Grading works as follows: You start with 1 point, and for each of

the 12 subquestions you can get 3/4 points. Partial points may be

awarded for partially correct answers.

1. (a) The hypothesis h1 is a member of H. To see this, note that x2

can only take the values ‘Warm’ and ‘Cold’. Hence h1 can more
simply be expressed as

h1(x) =

{

Yes if x3 = ‘Normal’,

No otherwise,

which in Mitchell’s notation becomes 〈?, ?, Normal, ?, ?, ?〉.

The hypothesis h2 is not a member of H. The reason is that
the constraints cannot represent dependencies between attributes:
The first case in the definition of h2 implies that any value is
allowed for x3. In addition, the first two cases together imply that
x2 can also take any value, and x1 can at least take the value
‘Sunny’. But then an input x with x1 = ‘Sunny’, x2 = ‘Warm’
and x3 = ‘Normal’, which is classified as ‘No’ by h2, would also be
classified as ‘Yes’ by any choice of constraints that is consistent
with the first two cases of h2.

(b) For example,

h(x) =











Yes if x2 = ‘Warm’ and x3 = ‘Normal’,

Yes if x2 = ‘Cold’ and x3 = ‘High’,

No otherwise.

See the answers to the second set of homework exercises for an
elaborate discussion.

2. It greedily selects attributes with the highest information gain. These
are the attributes that it estimates to have the highest mutual infor-
mation with the class labels. So it puts the attributes that it thinks
give the most information about the class labels at the top.
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3. (a) The hypothesis space of 14th degree polynomials would still be
much too large relative to the number of data points, so least
squares would still overfit if we used a sum of absolute errors.

(b) Increasing the number of data points does help against overfitting:
If we have an extremely large train set and we find a hypothesis
that has small error on the train set, then this is most likely not
due to luck, even if we have searched a pretty large hypothesis
space.

Compare this to the dice prediction game: If we throw the die
only two times, then it is pretty likely that some student will
predict both throws correctly just by luck. But if we throw the
die, say, 100 000 times and a student predicts most of the outcomes
correctly, then we may take this as a strong indication that the
student will be good at predicting future throws as well, even if
we searched among a group of 50 students to find this one.

4. (a)
k 1 3 5

Instance 1 White Black Black
Instance 2 White White Black

(b) Representing x1 by assigning integers to Black, White and Brown
does not work, because the difference between these integers would
be meaningless. One way to represent x1 would be as

Value Black White Brown

Representation





1
0
0









0
1
0









0
0
1





The other feature, x2 can just be represented by its own value. The
feature vector x can now be composed from the three components
of x1 and one component for x2.

For example, x1 = ‘Brown’ and x2 = 32 would give x =









0
0
1
32









.

5. Examples that are not linearly separable can never be classified cor-
rectly by the perceptron. So for example if the target function is xor, a
perceptron will always make at least one mistake if we see all possible
inputs:
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D =
y 1 1 −1 −1
x1 −1 1 1 −1
x2 1 −1 1 −1

6. Naive Bayes would classify the new example as True:

P (X1 = True | Y = False)P (X2 = True | Y = False)P (Y = False) = 0 · 0 ·
1

3
= 0

< P (X1 = True | Y = True)P (X2 = True | Y = True)P (Y = True) =
1

2
·
1

2
·
2

3
=

1
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7. (a) Maximum likelihood would select P1:

P1(D) = (9/10)5(1/10)3 > (1/10)5(9/10)3 = P2(D).

(b) MAP with the given prior would select P2:

π(θ = 1 | D) =
P1(D)π(1)

PBayes(D)
=

(9/10)5(1/10)3 · 1/100

PBayes(D)

=
95/1010

PBayes(D)

π(θ = 2 | D) =
P2(D)π(2)

PBayes(D)
=

93 · 99/1010

PBayes(D)

>
93 · 81/1010

PBayes(D)
=

95/1010

PBayes(D)
= π(θ = 1 | D)

8. The promiscuous grammar doesn’t help at all in compressing the text,
because it can generate all possible texts. So, although L(H) is small
for the promiscuous grammar, L(D | H) is at least as large as the
uncompressed text.

The ad hoc grammar also doesn’t help at all in compressing the text.
It can only generate the given text, so L(D | H) is very small, but the
encoding of the grammar contains a literal description of the text and
therefore L(H) is at least as large as the uncompressed text.

Finally, for the ‘right’ grammar, the number of grammatically correct
texts is exponentially smaller (in n) than the number of possible texts.
Therefore the difference between L(D | H) and the size of the uncom-
pressed text becomes larger and larger if we look at larger and larger
values of n. As the grammar doesn’t change with increasing n, its
codelength L(H) is constant. Therefore, for sufficiently large n, also
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the total codelength L(H) + L(D | H) for the ‘right’ grammar is much
smaller than the size of the uncompressed text.

Together these arguments imply that L(H) + L(D | H) will be small-
est for the ‘right’ grammar (for sufficiently large n), and hence this
grammar will be selected by two-part MDL.
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