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Exercises

1. Consider the List-Then-Eliminate algorithm for the EnjoySport exam-
ple with hypothesis space

H = {〈?, ?, ?, ?, ?, ?〉, 〈Sunny, ?, ?, ?, ?, ?〉,

〈Cloudy, ?, ?, ?, ?, ?〉, . . . , 〈∅, ∅, ∅, ∅, ∅, ∅〉},

as described on slide 19 of mlslides3.pdf. Please give an example of a
hypothesis (i.e. a function from feature vectors to class labels) that is not
contained in H.

Answer: Recall from class that H contains only 973 hypotheses out of the
296 hypotheses that are possible. There are therefore many possible
answers. Here are two possibilities. The second answer is given
literally in Section 2.7.1 of Mitchell.

Let x denote a 6-dimensional feature vector in the EnjoySport do-
main, where x1 encodes the value of the attribute Sky, x2 encodes
AirTemp, etc. Then, for example, the following hypothesis h1 is not
a member of H:

h1(x) =











Yes if x1 = ‘Sunny’ and x2 = ‘Cold’,

Yes if x1 = ‘Cloudy’ and x2 = ‘Warm’,

No otherwise.

To see this, note that the first case implies that ‘Sunny’ and ‘Cold’
must be allowed values for the attributes Sky and AirTemp, respec-
tively, and that the constraints for all the other attributes must be ‘?’.
Likewise the second case implies that ‘Cloudy’ and ‘Warm’ should be
allowed values for respectively Sky and AirTemp. The only constraint
on Sky or AirTemp that is consistent with these requirements is ‘?’.
Hence the only hypothesis in H that is consistent with the first two
cases must be 〈?, ?, ?, ?, ?, ?〉. But that means that the combination
x1 = ‘Cloudy’ and x2 = ‘Cold’ would also be allowed as part of the
concept, which is inconsistent with the third case. Thus h1 is not a
member of H. We may construct many similar hypotheses that are
not contained in H by noting that H cannot represent dependencies
between attributes, like for example: If x1 = ‘Sunny’, then x2 should
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be ‘Cold’; If x1 = ‘Cloudy’, then x2 should be ‘Warm’. Most of the
hypotheses that are not in H are of this form.

Another example of a hypothesis, h2, that is not a member of H is:

h2(x) =

{

Yes if x1 = ‘Sunny’ or x1 = ‘Cloudy’,

No otherwise.

To see this, consider which constraint on x1 would fit with h2. Sup-
pose this constraint would be ‘?’. Then the hypothesis would either
classify some x with x1 = ‘Rainy’ as ‘Yes’ or it would classify some x

with x1 = ‘Sunny’ as ‘No’ (if some other constraint were set to ‘∅’).
And if the constraint were set to ‘Sunny’, ‘Cloudy’, ‘Rainy’ or ‘∅’,
then there would exist a feature vector with either x1 = ‘Sunny’ or
x1 = ‘Rainy’ that would not be classified as ‘Yes’. Hence h2 is not a
member of H. In this case we have exploited the fact that Sky has
three possible values, and the constraints cannot represent the fact
that only two of them are allowed.

Grading:

• 2 points for a correct example.

• An explanation, although appreciated, is not required, because
it is easy to verify whether or not a given example is a member
of H.

2. Suppose we are given the data in Table 1. Consider the List-Then-

Eliminate algorithm with the hypothesis space H consisting of all possi-
ble decision trees for the EnjoySport domain. Given the data in the top
three rows of the table, how would this algorithm classify the last example
in the table, where there is a ‘?’ instead of the label?

Table 1: EnjoySport Data
x y

Sky AirTemp Humidity Wind Water Forecast EnjoySport

Sunny Warm Normal Strong Warm Same Yes

Sunny Warm High Strong Warm Same Yes

Rainy Cold High Strong Warm Change No

Sunny Warm High Strong Cool Change ?

Answer: The List-Then-Eliminate algorithm would not be able to
classify this new example, because H contains all possible hypothe-
ses (it is an unbiased hypothesis space) and the features of the new
example are not present in the previous training data.

Grading:

• 1 point for noting that the hypothesis space contains all possible
hypotheses. This is the critical observation.

• 1 point for the observation that the new example cannot be clas-
sified by the List-Then-Eliminate algorithm.
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3. [This is Exercise 3.1 from Mitchell.] Consider classification of data in
which the 4-dimensional feature vector x contains four Boolean features:
A, B, C and D. (Boolean means that a feature can only take two possible
values: 0 and 1, which we may think of as ‘False’ and ‘True’, respectively.)
Furthermore, the class label y is also Boolean. Give decision trees to
represent the following Boolean functions1:

(a) y = A ∧ ¬B

(b) y = A ∨ (B ∧ C)

(c) y = A ⊗ B

(d) y = (A ∧ B) ∨ (C ∧ D)

The symbol ‘⊗’ denotes the exclusive or of its arguments. Its truth table
is in Table 2.

Table 2: Truth table of exclusive or.

A B A ⊗ B

0 0 0
0 1 1
1 0 1
1 1 0

Answer: Different answers are possible. For example:

(a) A
0 1

0 B
0 1

1 0

(b) A
0 1

B
0 1

1

0 C
0 1

0 1

1I suggest that you draw these trees in some drawing program like, for example, Photoshop
(on Windows) or the Gimp, Inkscape, or Xfig (on Linux). It is okay if your trees don’t look
pretty, but they should be readable without too much effort.
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(c) A
0 1

B
0 1

B
0 1

0 1 1 0

(d) A
0 1

C
0 1

B
0 1

0 D
0 1

C
0 1

1

0 1 0 D
0 1

0 1

Grading:

• 0.75 points for each correct decision tree.

4. Suppose that Ω = {ω1, . . . , ωk} is a sample space and that p and q are
both probability mass functions on Ω. Let P and Q denote the probability
distributions on Ω that are defined by p and q, respectively. Show that if
p 6= q, then P 6= Q.

Answer: What it means when two functions are different: Note that p,
q, P and Q are all functions. p and q take a single outcome ω ∈ Ω
as input. P and Q take an event E ⊆ Ω as input. Two functions
that have the same domain (set of possible inputs) and range (set of
possible outputs) are different if and only if they assign a different
value to at least one input.

Answer to the exercise: If p 6= q, then there exists at least one out-
come ω ∈ Ω such that p(ω) 6= q(ω). It follows that, for this specific
outcome ω,

P ({ω}) = p(ω) 6= q(ω) = Q({ω})

and hence that P and Q are different, because they assign a different
value to the event {ω}.

Grading:

• 2 points for any correct proof.

• If the proof is not correct, then the each of the following obser-
vations still gives 0.5 points:

– p 6= q implies that there exists at least one ω ∈ Ω such that
p(ω) 6= q(ω).

– p(ω) 6= q(ω) implies P ({ω}) 6= Q({ω}).
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Grading Policy

• Grades are between 1 and 10.

• You always start with 1 point.

• Partial points may be awarded for partially correct exercises.
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