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Exercises

1. The following Boolean functions take two Boolean features x1 and x2

as input. The features can take on the values −1 and +1, where −1
represents False and +1 represents True. The output y of the functions
can also take on the values −1 and +1, with the same interpretation. For
each of the functions below, either give weights for a perceptron such that
the perceptron represents the function or argue that no such weights exist.

Hint: Draw pictures like on slides 9 and 10 from mlslides8.pdf. (You do
not have to submit these.)

(a) y = ¬AND(x1, x2)

(b) y =

{

+1 if x1 = x2

−1 otherwise

(c) y =

{

+1 if x1 = 1 and x2 = −1

−1 otherwise

Answers:
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A perceptron can represent this function using for example the
weights w0 = 1, w1 = −1, w2 = −1. Other answers are possible
as well. In particular, all of these weights multiplied by the same
positive constant would give the same classifications. Multipli-
cation by a negative constant is not correct, however, because it
inverts the classifications made by the perceptron.

1



(b)
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No weights exist such that a perceptron represents this function,
because the pairs of inputs and corresponding outputs are not
linearly separable. (See also slide 10 of mlslides8.pdf.)

(c)
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A perceptron can represent this function using for example the
weights w0 = −1, w1 = 1, w2 = −1. Again, other answers are
possible as well.

Grading:

• 1 point for each correct answer.

• Giving weights that represent a correct decision boundary, but
result in exactly the opposite of the desired classifications, still
gives 0.5 points. For example, in (a) the answer w0 = −1, w1 = 1,
w2 = 1 would still give 0.5 points.

2. (a) For both of the following functions, argue whether gradient descent
is an appropriate method to find the minimum.

1
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(b) Suppose we run gradient descent for each of the functions, regardless
of whether it is appropriate. What would be ∆xn for each of the
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functions when the learning rate is η = 0.1? (Work out the deriva-
tive.)

Answers:

(a) N.B. A function that is not convex does not need to have
local minima. It only works the other way around: If a
function is convex, then it is guaranteed not to have any
local minima (apart from the global one).
1

4
x4 + 10x3 − 500x2 + 1: Gradient descent is not appropriate to

find the minimum of this function, because it has a local
minimum (at x = 20).

x4 + 100: Gradient descent is appropriate, because x4+100 only
has one global minimum (at x = 0) and no other local min-
ima. An informal argument that points this out is sufficient
to get full points. For example, one might argue rather infor-
mally that x4 increases faster and faster as |x|, the absolute
value of x, increases, and hence it must be convex, which
implies that it has no other local minima than the global
minimum in the picture.
You could also have used the fact that x4 is convex, which I
told you during the lecture, and argued that if x4 is convex,
so must be x4 + 100, which is just x4 moved up a little.
As a third option, some of you knew that if the second deriva-
tive of a function with domain R is non-negative everywhere
on R, then this implies that the function is convex. This is
easily verified, since

d2

dx2
(x4 + 100) =

d

dx
4x3 = 12x2,

which is non-negative for any x.

(b) I write x instead of xn to simplify the notation.
1

4
x4 + 10x3 − 500x2 + 1:

∆x = −η
d

dx
(
1

4
x4 + 10x3 − 500x2 + 1)

= −
1

10
(x3 + 30x2 − 1000x)

= −
1

10
x3 − 3x2 + 100x

x4 + 100:

∆x = −η
d

dx
(x4 + 100)

= −
4

10
x3

Grading:

• 1 point for each of the two cases of part (a)
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• 1 point for each of the two cases of part (b)

3. Suppose we have training data D =

(

y1

x1

)

, . . . ,

(

yn

xn

)

and we want to

use gradient descent to find weights w that minimize the error on D for
a linear unit hw. However, instead of the Sum of Squared Errors (SSE),
we use a strange new error measure called the Sum of Quadratic Errors
(SQE). It is defined as

SQE(w,D) =

n
∑

i=1

(yi − hw(xi))
4.

What would be the gradient that our algorithm would use in this case?
Give a derivation like in Equation 4.6 of Mitchell.

Hints: See slides 28 and 29 of mlslides8.pdf, and Equation 4.6 in Mitchell.
Note that Equation 4.6 applies the chain rule, so you may have to look
that up somewhere.

Answer: The ith component of the gradient is given by:

∂

∂wi

SQE(w,D) =
∂

∂wi

n
∑

j=1

(yj − hw(xj))
4

=
n

∑

j=1

∂

∂wi

(yj − hw(xj))
4

Now by the chain rule:

=

n
∑

j=1

4(yj − hw(xj))
3

∂

∂wi

(yj − hw(xj))

Letting xjk denote the kth component of vector xj , we get:

= 4
n

∑

j=1

(yj − hw(xj))
3

∂

∂wi

(yj −
d

∑

k=0

wkxjk)

= 4

n
∑

j=1

(yj − hw(xj))
3(−

d
∑

k=0

∂

∂wi

wkxjk)

= 4
n

∑

j=1

(yj − hw(xj))
3 · (−xji).

Here the last equality follows because

∂

∂wi

wkxjk =

{

xjk if k = i,

0 otherwise.

N.B. I should have called SQE differently, because ‘quadratic’ means
the same as ‘squared’ and I meant to say ‘to-the-fourth’. So for
example “Sum of Strange Errors” would have been better.

Grading:

• 2 points for a correct answer.
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Grading Policy

• Grades are between 1 and 10.

• You always start with 1 point.

• Partial points may be awarded for partially correct answers.
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