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Machine Learning 2007: Lecture 10

Instructor: Tim van Erven (Tim.van.Erven@cwi.nl)
Website: www.cwi.nl/˜erven/teaching/0708/ml/

November 21, 2007

www.cwi.nl/~erven/teaching/0708/ml/
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This Lecture:

● Section 6.9 about naive Bayes.
● Chapter 6 up to section 6.5.0 about Bayesian learning.
● I present things in a better order.
● We will continue with Bayesian learning in the next lecture.
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This Lecture:

● Section 6.9 about naive Bayes.
● Chapter 6 up to section 6.5.0 about Bayesian learning.
● I present things in a better order.
● We will continue with Bayesian learning in the next lecture.

WARNING versus Mitchell:

● Although naive Bayes is in the chapter about Bayesian
learning (explained in the next lecture), Mitchell does not
explain how it can be viewed as a Bayesian method, which is
not trivial!

● The way Mitchell presents naive Bayes, it does not look like a
Bayesian method at all.



Overview

Weka Demonstration

Organisational
Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood
Parameter Estimation

Bayesian Learning

5 / 29

● Rogier: Weka Demonstration
● Organisational Matters
● Naive Bayes Continued
● Probability Theory

✦ I.I.D. Distributions
✦ Distributions on R

● Models
● Maximum Likelihood Parameter Estimation
● Bayesian Learning (Part 1)



Naive Bayes

Weka Demonstration

Organisational
Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood
Parameter Estimation

Bayesian Learning

6 / 29

Classification:

● Suppose we want to classify d-dimensional feature vector x.
● Then select the label y with highest conditional probability:

arg maxyP (Y = y | X = x)

= arg maxy

P (X = x | Y = y)P (Y = y)

P (X = x)

= arg maxy P (X = x | Y = y)P (Y = y)

= arg maxy

d
∏

i=1

P (Xi = xi | Y = y)P (Y = y)

● The last step assumes that the components of x are
conditionally independent given the class label y.

● Probabilities are estimated from training data.
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Fairy tale data set:

x1 x2 x3 y
WearsBlack SavesPrincess HorseColour GoodOrEvil

No Yes Black Good
Yes No Black Evil
No No White Good
Yes Yes Brown Good

Classifying the new instance





No
Yes

White



:

3
∏

i=1

P (Xi = xi | Y = Good)P (Y = Good) =
2

3
· 2

3
· 1

3
· 3

4

>
3

∏

i=1

P (Xi = xi | Y = Evil)P (Y = Evil) = 0 · 0 · 0 · 1

4
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Incorrect independence assumption:

● The assumption that components of x are conditionally
independent given the class label is very strong. In fact it is
often known to be false.
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Incorrect independence assumption:

● The assumption that components of x are conditionally
independent given the class label is very strong. In fact it is
often known to be false.

● For example, naive Bayes is often used to classify e-mail as
spam or not spam. Each component of x represents a word
in the text of an e-mail.

● If one of the words ‘OEM’ and ‘software’ occurs in a spam
message, then the other one is more likely to occur as well.

● Hence the components of x are clearly not independent.
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Incorrect independence assumption:

● The assumption that components of x are conditionally
independent given the class label is very strong. In fact it is
often known to be false.

● For example, naive Bayes is often used to classify e-mail as
spam or not spam. Each component of x represents a word
in the text of an e-mail.

● If one of the words ‘OEM’ and ‘software’ occurs in a spam
message, then the other one is more likely to occur as well.

● Hence the components of x are clearly not independent.

But it works anyway:

According to [Domingos and Pazzani, 1996]:

● Even if P (y | x) is not estimated correctly;
● Often arg maxy P (y | x) is still correct.
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Definition:

● Suppose we have data D = y1, . . ., yn.
● Suppose each outcome yi is distributed according to the

same distribution P that does not depend on the previous
outcomes y1, . . ., yi−1.

● Then we say that the outcomes y1, . . ., yn are independent
and identically distributed (i.i.d.).

● We have that P (Y1 = y1, . . . , Yn = yn) =
∏n

i=1
P (Yi = yi).
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Definition:

● Suppose we have data D = y1, . . ., yn.
● Suppose each outcome yi is distributed according to the

same distribution P that does not depend on the previous
outcomes y1, . . ., yi−1.

● Then we say that the outcomes y1, . . ., yn are independent
and identically distributed (i.i.d.).

● We have that P (Y1 = y1, . . . , Yn = yn) =
∏n

i=1
P (Yi = yi).

Example:

● Suppose we draw six cards y1, . . ., y6 from a deck with
replacement .

● Then for each draw yi the probability of drawing, say, a queen
of hearts, is the same and does not depend on our previous
draws: The draws are i.i.d.

● Without replacement, the draws would not be i.i.d!
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Finite sample space:

● Suppose Ω = {ω1, . . . , ωm}

● Then the probability of an
event A ⊆ Ω is

P (A) =
∑

ωi∈A

p(ωi),

● where the mass function
p satisfies:

1. 0 ≤ p(ω) ≤ 1 (for all
ω ∈ Ω)

2. p(ω1)+ . . .+p(ωm) = 1

● Note that, for all ω ∈ Ω,
P ({ω}) = p(ω).

The sample space R:

● Suppose Ω = R.
● Then the probability of an

event A ⊆ Ω is

P (A) =

∫

x∈A
p(x) dx,

● where the density func-
tion p satisfies:

1. 0 ≤ p(x) (for all x ∈ Ω)
2.

∫

x∈Ω
p(x) dx = 1

● Note that, for all x ∈ Ω,
P ({x}) = 0 6= p(x)!
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Finite sample space:

● Suppose Ω = {ω1, . . . , ωm}
● Then the uniform distri-

bution on Ω gives the
same probability to all out-
comes.

● Its mass function is given
by

p(ω) = 1/m.

Examples:

● P ({ω1, . . . , ωm/2}) = 1

2

● P ({ωi}) = 1/m = p(ωi)

The interval [0, 1]:

● Suppose Ω = R.
● Then the uniform distribution

on [0, 1] is defined by the
density function

p(x) =

{

1 if 0 ≤ x ≤ 1,

0 otherwise.

0−1

1

1 2
x

p(x)

Examples:

● P ([0, 1

2
]) = 1

2

● P ({0.1}) = 0 6= 1 = p(0.1)
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−4 −2 0 2 4

0.1

0.2

0.3

0.4

x

p(x)

pµ,σ(x) =
1√
2πσ

e−
(x−µ)2

2σ2

Remarks:

● Its mean µ controls where it is centered.
● Its variance σ2 controls how spread out it is (larger variance

makes it flatter and wider).
● The normal distribution is also called the Gaussian

distribution.
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Definition:

A (statistical) model is a hypothesis space that contains only
probability distributions.
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Definition:

A (statistical) model is a hypothesis space that contains only
probability distributions.

Example: the Bernoulli model for prediction

● For binary outcomes y ∈ {0, 1} define the Bernoulli
distribution with probability of success θ by

pθ(y) = θy(1 − θ)1−y =

{

θ if y = 1,

1 − θ if y = 0.

● Then the Bernoulli model (with parameter θ) is the set of all
possible Bernoulli distributions1:

MBernoulli = {pθ | θ ∈ [0, 1]}

1For the remainder of the lectures I will be a bit sloppy about the distinction
between distributions and density functions to avoid distracting technicalities.
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The label depends on the input:

● In classification or regression we get an input x and we need
to produce an output y.

● Thus our estimate of y will depend on the input x that we get.
● For example (for 1-dimensional x): y = 3 + 2x + x2.
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The label depends on the input:

● In classification or regression we get an input x and we need
to produce an output y.

● Thus our estimate of y will depend on the input x that we get.
● For example (for 1-dimensional x): y = 3 + 2x + x2.

The same holds with models:

For example, for binary y ∈ {0, 1} and 1-dimensional x define the
model M = {pθ,x | θ ∈ [0, 1]} (with parameter θ), where

pθ,x(y) =

{

θy(1 − θ)1−y if x < 0,

1 − θy(1 − θ)1−y if x ≥ 0.
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The label depends on the input:

● In classification or regression we get an input x and we need
to produce an output y.

● Thus our estimate of y will depend on the input x that we get.
● For example (for 1-dimensional x): y = 3 + 2x + x2.

The same holds with models:

For example, for binary y ∈ {0, 1} and 1-dimensional x define the
model M = {pθ,x | θ ∈ [0, 1]} (with parameter θ), where

pθ,x(y) =

{

θy(1 − θ)1−y if x < 0,

1 − θy(1 − θ)1−y if x ≥ 0.

● We are usually interested in distributions on y; x is
considered as given.

● Naive Bayes is an exception.
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Deterministic hypotheses + noise. . .

● Suppose H = {hw | w ∈ R
3} is the set of all 2nd degree

polynomials: hw(x) = w0 + w1x + w2x
2.

● Suppose we assume normally distributed noise ǫ with mean
µ = 0 and variance σ = 1.

● Then y = hw(x) + ǫ.
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Deterministic hypotheses + noise. . .

● Suppose H = {hw | w ∈ R
3} is the set of all 2nd degree

polynomials: hw(x) = w0 + w1x + w2x
2.

● Suppose we assume normally distributed noise ǫ with mean
µ = 0 and variance σ = 1.

● Then y = hw(x) + ǫ.

. . . gives distributions:

● Adding hw(x) to a normal distribution only changes its mean:
µ = 0 + hw(x).

● Hence the density of y is 1√
2π

e−
(y−hw(x))2

2 .

● So we get the model M = {pw,x | w ∈ R
3} (with parameters

w), where

pw,x(y) =
1√
2π

e−
(y−hw(x))2

2
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Parameter Estimation:

● Model M = {pθ | θ ∈ Θ} with parameter θ. (Θ is the set of
possible parameter values.)

● Data D = d1, . . ., dn, which is distributed according to an
unknown distribution pθ∗ ∈ M.

● We want to estimate the parameter θ∗ from the data D.



Maximum Likelihood Parameter Estimation

Weka Demonstration

Organisational
Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood
Parameter Estimation

Bayesian Learning

20 / 29

Parameter Estimation:

● Model M = {pθ | θ ∈ Θ} with parameter θ. (Θ is the set of
possible parameter values.)

● Data D = d1, . . ., dn, which is distributed according to an
unknown distribution pθ∗ ∈ M.

● We want to estimate the parameter θ∗ from the data D.

Maximum Likelihood:

Maximum likelihood parameter estimation selects the parameter
θ̂ that maximizes the density2 of the data:

θ̂ = arg maxθ pθ(D)

2If D takes values in a finite sample space, then the probability mass is used
instead of the density.
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Bernoulli distribution for n outcomes:

● Given binary data D = y1, . . . , yn, we want to predict yn+1.
● We assume that the outcomes in D are i.i.d. according to a

Bernoulli distribution.
● If n0 and n1 respectively denote the number of zeroes and

ones in D, then

pθ(D) = θn1(1 − θ)n0

Maximum Likelihood: 3

θ̂ = arg maxθ θn1(1 − θ)n0 = arg maxθ n1 ln θ + n0 ln(1 − θ)

Solving d
dθ n1 ln θ + n0 ln(1 − θ) = 0, gives: θ̂ = n1

n1+n0
= n1

n .

3Ignoring minor technical issues for θ = 0 or θ = 1.
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Model with normally distributed noise:

● Suppose we get i.i.d. data D = (y1, x1)
⊤, . . . , (yn, xn)⊤.

● We use the model of second degree polynomials with
normally distributed noise, with µ = 0 and σ = 1.

● Then, writing xn for x1, . . ., xn,

pw,xn(y1, . . . , yn) =

n
∏

i=1

pw,xi
(yi) =

n
∏

i=1

1√
2π

e−
(yi−hw(xi))

2

2
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Model with normally distributed noise:

● Suppose we get i.i.d. data D = (y1, x1)
⊤, . . . , (yn, xn)⊤.

● We use the model of second degree polynomials with
normally distributed noise, with µ = 0 and σ = 1.

● Then, writing xn for x1, . . ., xn,

pw,xn(y1, . . . , yn) =

n
∏

i=1

pw,xi
(yi) =

n
∏

i=1

1√
2π

e−
(yi−hw(xi))

2

2

Maximum likelihood gives least mean squares:

arg max
w

n
∏

i=1

1√
2π

e−
(yi−hw(xi))

2

2 = arg max
w

ln
n

∏

i=1

e−
(yi−hw(xi))

2

2

= arg min
w

n
∑

i=1

(yi − hw(xi))
2
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Model with normally distributed noise:

● Suppose we get i.i.d. data D = (y1, x1)
⊤, . . . , (yn, xn)⊤.

● We use the model of second degree polynomials with
normally distributed noise, with µ = 0 and σ = 1.

● Then, writing xn for x1, . . ., xn,

pw,xn(y1, . . . , yn) =

n
∏

i=1

pw,xi
(yi) =

n
∏

i=1

1√
2π

e−
(yi−hw(xi))

2

2

Maximum likelihood gives least mean squares:

arg max
w

n
∏

i=1

1√
2π

e−
(yi−hw(xi))

2

2 = arg max
w

ln
n

∏

i=1

e−
(yi−hw(xi))

2

2

= arg min
w

n
∑

i=1

(yi − hw(xi))
2

Remark: Maximum likelihood will overfit if we apply it to a very
large hypothesis space/model. (E.g. high degree polynomials.)
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Very important:

● Bayesian learning is a general framework for doing machine
learning that can be used with any model.

● It avoids overfitting.
● It is widely used in machine learning.
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Very important:

● Bayesian learning is a general framework for doing machine
learning that can be used with any model.

● It avoids overfitting.
● It is widely used in machine learning.

Motivation:

● A model M = {Pθ | θ ∈ Θ} contains many distributions Pθ for
the data D ∈ Ω.

● Suppose we want to calculate the probability P (θ | D).
● Then this is not defined: What is P? What is its sample

space?
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The Idea:

● We start with a model M = {Pθ | θ ∈ Θ}, which contains
many distributions.

● Then we put a prior distribution π on the parameter θ.
● We get a single distribution PBayes on both parameters and

data!
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The Idea:

● We start with a model M = {Pθ | θ ∈ Θ}, which contains
many distributions.

● Then we put a prior distribution π on the parameter θ.
● We get a single distribution PBayes on both parameters and

data!

The details:

PBayes(θ) = π(θ) and PBayes(D | θ)= Pθ(D)
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The Idea:

● We start with a model M = {Pθ | θ ∈ Θ}, which contains
many distributions.

● Then we put a prior distribution π on the parameter θ.
● We get a single distribution PBayes on both parameters and

data!

The details:

PBayes(θ) = π(θ) and PBayes(D | θ)= Pθ(D)

● PBayes is a single distribution on Ω′ = Ω × Θ, which contains
both the data and θ.

● Therefore PBayes(θ | D) is well-defined.
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● Suppose our data consists of one binary outcome y.
● Consider the model M =

{

Pθ | θ ∈ {1

4
, 1

2
, 3

4
}
}

, where
Pθ(y) = θy(1 − θ)1−y is a Bernoulli distribution.

● Take π to be the uniform distribution on {1

4
, 1

2
, 3

4
}.
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● Suppose our data consists of one binary outcome y.
● Consider the model M =

{

Pθ | θ ∈ {1

4
, 1

2
, 3

4
}
}

, where
Pθ(y) = θy(1 − θ)1−y is a Bernoulli distribution.

● Take π to be the uniform distribution on {1

4
, 1

2
, 3

4
}.

PBayes

(

y = 1, θ =
1

2

)

= PBayes

(

y = 1 | θ =
1

2

)

PBayes

(

θ =
1

2

)

= P 1
2
(1) · π

(

1

2

)

=
1

2
· 1

3
=

1

6

PBayes

(

y = 0, θ =
1

4

)

= PBayes

(

y = 0 | θ =
1

4

)

PBayes

(

θ =
1

4

)

= P 1
4
(0) · π

(

1

4

)

=
3

4
· 1

3
=

1

4
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● Suppose P is a distribution on Ω and A ⊆ Ω is an event.

Frequentist: If we perform this
same experiment n times, then
the relative frequency of ob-
serving an outcome ω ∈ A goes
to P (A) as n → ∞.

Subjective Bayesian: 4 Be-
fore observing the outcome of
the experiment, P (A) is our
degree of belief that we will
get an outcome ω ∈ A.

4There are other Bayesian interpretations of probability as well.
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● Suppose P is a distribution on Ω and A ⊆ Ω is an event.

Frequentist: If we perform this
same experiment n times, then
the relative frequency of ob-
serving an outcome ω ∈ A goes
to P (A) as n → ∞.

● Considers infinite number of
repetitions of the experiment.

● Requires that it is possible (in
principle) to observe the out-
come of the experiment.

● Objective: the same for ev-
eryone.

Subjective Bayesian: 4 Be-
fore observing the outcome of
the experiment, P (A) is our
degree of belief that we will
get an outcome ω ∈ A.

● Considers only one repeti-
tion of the experiment.

● Does not require that we
can observe the outcome
of the experiment.

● Subjective: My probability
may be different from your
probability.

4There are other Bayesian interpretations of probability as well.
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● Rogier: Weka Demonstration
● Organisational Matters
● Naive Bayes Continued
● Probability Theory

✦ I.I.D. Distributions
✦ Distributions on R

● Models
● Maximum Likelihood Parameter Estimation
● Bayesian Learning (Part 1)
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