Machine Learning 2007: Lecture 10

Instructor: Tim van Erven (Tim.van.Erven@cwi.nl)

Website: www.cwi.nl/~erven/teaching/0708/ml/

November 21, 2007

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

- Rogier: Weka Demonstration
- Organisational Matters
- Naive Bayes Continued
- Probability Theory
 - I.I.D. Distributions
 - ♦ Distributions on R
- Models
- Maximum Likelihood Parameter Estimation
- Bayesian Learning (Part 1)

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

- Rogier: Weka Demonstration
- Organisational Matters
- Naive Bayes Continued
- Probability Theory
 - I.I.D. Distributions
 - ◆ Distributions on ℝ
- Models
- Maximum Likelihood Parameter Estimation
- Bayesian Learning (Part 1)

This Lecture versus Mitchell

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

This Lecture:

- Section 6.9 about naive Bayes.
- Chapter 6 up to section 6.5.0 about Bayesian learning.
- I present things in a better order.
- We will continue with Bayesian learning in the next lecture.

This Lecture versus Mitchell

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

This Lecture:

- Section 6.9 about naive Bayes.
- Chapter 6 up to section 6.5.0 about Bayesian learning.
- I present things in a better order.
- We will continue with Bayesian learning in the next lecture.

WARNING versus Mitchell:

- Although naive Bayes is in the chapter about Bayesian learning (explained in the next lecture), Mitchell does not explain how it can be viewed as a Bayesian method, which is not trivial!
- The way Mitchell presents naive Bayes, it does not look like a Bayesian method at all.

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

- Rogier: Weka Demonstration
- Organisational Matters
- Naive Bayes Continued
- Probability Theory
 - I.I.D. Distributions
 - ◆ Distributions on ℝ
- Models
- Maximum Likelihood Parameter Estimation
- Bayesian Learning (Part 1)

Naive Bayes

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Classification:

- Suppose we want to classify d-dimensional feature vector \mathbf{x} .
- Then select the label y with highest conditional probability:

$$\arg \max_{y} P(Y = y \mid X = \mathbf{x})$$

$$= \arg \max_{y} \frac{P(X = \mathbf{x} \mid Y = y)P(Y = y)}{P(X = \mathbf{x})}$$

$$= \arg \max_{y} P(X = \mathbf{x} \mid Y = y)P(Y = y)$$

$$= \arg \max_{y} \prod_{i=1}^{d} P(X_i = x_i \mid Y = y)P(Y = y)$$

- The last step assumes that the components of x are conditionally independent given the class label y.
- Probabilities are estimated from training data.

Naive Bayes Example

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Fairy tale data set:

x_1	x_2	x_3	y
WearsBlack	SavesPrincess	HorseColour	GoodOrEvil
No	Yes	Black	Good
Yes	No	Black	Evil
No	No	White	Good
Yes	Yes	Brown	Good

Classifying the new instance (No Yes White):

$$\begin{split} \prod_{i=1}^{3} P(X_i = x_i \mid Y = \mathsf{Good}) P(Y = \mathsf{Good}) &= \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{3}{4} \\ &> \prod_{i=1}^{3} P(X_i = x_i \mid Y = \mathsf{Evil}) P(Y = \mathsf{Evil}) = 0 \cdot 0 \cdot 0 \cdot \frac{1}{4} \end{split}$$

Inductive Bias

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Incorrect independence assumption:

 The assumption that components of x are conditionally independent given the class label is very strong. In fact it is often known to be false.

Inductive Bias

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Incorrect independence assumption:

- The assumption that components of x are conditionally independent given the class label is very strong. In fact it is often known to be false.
- For example, naive Bayes is often used to classify e-mail as spam or not spam. Each component of x represents a word in the text of an e-mail.
- If one of the words 'OEM' and 'software' occurs in a spam message, then the other one is more likely to occur as well.
- ullet Hence the components of x are clearly not independent.

Inductive Bias

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Incorrect independence assumption:

- The assumption that components of x are conditionally independent given the class label is very strong. In fact it is often known to be false.
- For example, naive Bayes is often used to classify e-mail as spam or not spam. Each component of x represents a word in the text of an e-mail.
- If one of the words 'OEM' and 'software' occurs in a spam message, then the other one is more likely to occur as well.
- ullet Hence the components of x are clearly not independent.

But it works anyway:

According to [Domingos and Pazzani, 1996]:

- Even if $P(y \mid \mathbf{x})$ is not estimated correctly;
- Often $\arg \max_{y} P(y \mid \mathbf{x})$ is still correct.

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

- Rogier: Weka Demonstration
- Organisational Matters
- Naive Bayes Continued
- Probability Theory
 - I.I.D. Distributions
 - lack Distributions on $\mathbb R$
- Models
- Maximum Likelihood Parameter Estimation
- Bayesian Learning (Part 1)

I.I.D. Distributions

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Definition:

- Suppose we have data $D = y_1, \ldots, y_n$.
- Suppose each outcome y_i is distributed according to the same distribution P that does not depend on the previous outcomes y_1, \ldots, y_{i-1} .
- Then we say that the outcomes y_1, \ldots, y_n are independent and identically distributed (i.i.d.).
- We have that $P(Y_1 = y_1, ..., Y_n = y_n) = \prod_{i=1}^n P(Y_i = y_i)$.

I.I.D. Distributions

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Definition:

- Suppose we have data $D = y_1, \ldots, y_n$.
- Suppose each outcome y_i is distributed according to the same distribution P that does not depend on the previous outcomes y_1, \ldots, y_{i-1} .
- Then we say that the outcomes y_1, \ldots, y_n are independent and identically distributed (i.i.d.).
- We have that $P(Y_1 = y_1, ..., Y_n = y_n) = \prod_{i=1}^n P(Y_i = y_i)$.

Example:

- Suppose we draw six cards y_1, \ldots, y_6 from a deck with replacement.
- Then for each draw y_i the probability of drawing, say, a queen of hearts, is the same and does not depend on our previous draws: The draws are i.i.d.
- Without replacement, the draws would not be i.i.d!

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

- Rogier: Weka Demonstration
- Organisational Matters
- Naive Bayes Continued
- Probability Theory
 - I.I.D. Distributions
 - lack Distributions on $\mathbb R$
- Models
- Maximum Likelihood Parameter Estimation
- Bayesian Learning (Part 1)

Distributions on \mathbb{R}

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Finite sample space:

- Suppose $\Omega = \{\omega_1, \dots, \omega_m\}$
- Then the probability of an event $A \subseteq \Omega$ is

$$P(A) = \sum_{\omega_i \in A} p(\omega_i),$$

- where the mass function p satisfies:
 - 1. $0 \le p(\omega) \le 1$ (for all $\omega \in \Omega$)
 - 2. $p(\omega_1) + \ldots + p(\omega_m) = 1$
- Note that, for all $\omega \in \Omega$, $P(\{\omega\}) = p(\omega)$.

The sample space \mathbb{R} :

- Suppose $\Omega = \mathbb{R}$.
- Then the probability of an event $A \subseteq \Omega$ is

$$P(A) = \int_{x \in A} p(x) \ dx,$$

- where the density function p satisfies:
 - 1. $0 \le p(x)$ (for all $x \in \Omega$)
 - $2. \quad \int_{x \in \Omega} p(x) \ dx = 1$
- Note that, for all $x \in \Omega$, $P(\{x\}) = 0 \neq p(x)!$

Example: The Uniform Distribution

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Finite sample space:

- Suppose $\Omega = \{\omega_1, \dots, \omega_m\}$ •
- Then the uniform distribution on Ω gives the same probability to all outcomes.
- Its mass function is given by

$$p(\omega) = 1/m$$
.

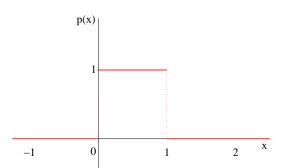
Examples:

- $P(\{\omega_1,\ldots,\omega_{m/2}\}) = \frac{1}{2}$
- $P(\{\omega_i\}) = 1/m = p(\omega_i)$

The interval [0,1]:

- Suppose $\Omega = \mathbb{R}$.
- Then the uniform distribution on [0,1] is defined by the density function

$$p(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$



Examples:

- $P([0,\frac{1}{2}]) = \frac{1}{2}$
- $P(\{0.1\}) = 0 \neq 1 = p(0.1)$

Example: The Normal Distribution

Weka Demonstration

Organisational Matters

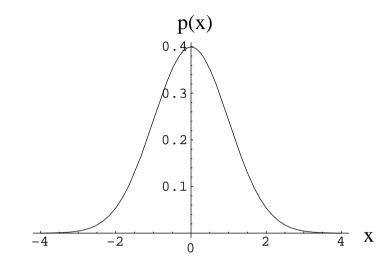
Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning



$$p_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Remarks:

- Its **mean** μ controls where it is centered.
- Its variance σ^2 controls how spread out it is (larger variance makes it flatter and wider).
- The normal distribution is also called the Gaussian distribution.

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

- Rogier: Weka Demonstration
- Organisational Matters
- Naive Bayes Continued
- Probability Theory
 - I.I.D. Distributions
 - lack Distributions on $\mathbb R$
- Models
- Maximum Likelihood Parameter Estimation
- Bayesian Learning (Part 1)

Models

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Definition:

A **(statistical) model** is a hypothesis space that contains only probability distributions.

Models

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Definition:

A **(statistical) model** is a hypothesis space that contains only probability distributions.

Example: the Bernoulli model for prediction

• For binary outcomes $y \in \{0, 1\}$ define the **Bernoulli** distribution with probability of success θ by

$$p_{\theta}(y) = \theta^{y} (1 - \theta)^{1 - y} = \begin{cases} \theta & \text{if } y = 1, \\ 1 - \theta & \text{if } y = 0. \end{cases}$$

• Then the **Bernoulli model** (with parameter θ) is the set of all possible Bernoulli distributions¹:

$$\mathcal{M}_{\mathsf{Bernoulli}} = \{ p_{\theta} \mid \theta \in [0, 1] \}$$

¹For the remainder of the lectures I will be a bit sloppy about the distinction between distributions and density functions to avoid distracting technicalities.

Models in Classification or Regression

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

The label depends on the input:

- In classification or regression we get an input x and we need to produce an output y.
- Thus our estimate of y will depend on the input x that we get.
- For example (for 1-dimensional x): $y = 3 + 2x + x^2$.

Models in Classification or Regression

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

The label depends on the input:

- In classification or regression we get an input x and we need to produce an output y.
- Thus our estimate of y will depend on the input x that we get.
- For example (for 1-dimensional x): $y = 3 + 2x + x^2$.

The same holds with models:

For example, for binary $y \in \{0, 1\}$ and 1-dimensional x define the model $\mathcal{M} = \{p_{\theta,x} \mid \theta \in [0, 1]\}$ (with parameter θ), where

$$p_{\theta,x}(y) = \begin{cases} \theta^y (1-\theta)^{1-y} & \text{if } x < 0, \\ 1 - \theta^y (1-\theta)^{1-y} & \text{if } x \ge 0. \end{cases}$$

Models in Classification or Regression

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

The label depends on the input:

- In classification or regression we get an input x and we need to produce an output y.
- Thus our estimate of y will depend on the input x that we get.
- For example (for 1-dimensional x): $y = 3 + 2x + x^2$.

The same holds with models:

For example, for binary $y \in \{0,1\}$ and 1-dimensional x define the model $\mathcal{M} = \{p_{\theta,x} \mid \theta \in [0,1]\}$ (with parameter θ), where

$$p_{\theta,x}(y) = \begin{cases} \theta^y (1-\theta)^{1-y} & \text{if } x < 0, \\ 1 - \theta^y (1-\theta)^{1-y} & \text{if } x \ge 0. \end{cases}$$

- We are usually interested in distributions on y; x is considered as given.
- Naive Bayes is an exception.

From Hypothesis Space to Model

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Deterministic hypotheses + noise...

- Suppose $\mathcal{H} = \{h_{\mathbf{w}} \mid \mathbf{w} \in \mathbb{R}^3\}$ is the set of all 2nd degree polynomials: $h_{\mathbf{w}}(x) = w_0 + w_1 x + w_2 x^2$.
- Suppose we assume normally distributed noise ϵ with mean $\mu=0$ and variance $\sigma=1$.
- Then $y = h_{\mathbf{w}}(x) + \epsilon$.

From Hypothesis Space to Model

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Deterministic hypotheses + noise...

- Suppose $\mathcal{H} = \{h_{\mathbf{w}} \mid \mathbf{w} \in \mathbb{R}^3\}$ is the set of all 2nd degree polynomials: $h_{\mathbf{w}}(x) = w_0 + w_1 x + w_2 x^2$.
- Suppose we assume normally distributed noise ϵ with mean $\mu=0$ and variance $\sigma=1$.
- Then $y = h_{\mathbf{w}}(x) + \epsilon$.

... gives distributions:

- Adding $h_{\mathbf{w}}(x)$ to a normal distribution only changes its mean: $\mu = 0 + h_{\mathbf{w}}(x)$.
- Hence the density of y is $\frac{1}{\sqrt{2\pi}}e^{-\frac{(y-h_{\mathbf{w}}(x))^2}{2}}$.
- So we get the model $\mathcal{M} = \{p_{\mathbf{w},x} \mid \mathbf{w} \in \mathbb{R}^3\}$ (with parameters \mathbf{w}), where

$$p_{\mathbf{w},x}(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-h_{\mathbf{w}}(x))^2}{2}}$$

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

- Rogier: Weka Demonstration
- Organisational Matters
- Naive Bayes Continued
- Probability Theory
 - I.I.D. Distributions
 - ◆ Distributions on ℝ
- Models
- Maximum Likelihood Parameter Estimation
- Bayesian Learning (Part 1)

Maximum Likelihood Parameter Estimation

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Parameter Estimation:

- Model $\mathcal{M} = \{p_{\theta} \mid \theta \in \Theta\}$ with parameter θ . (Θ is the set of possible parameter values.)
- Data $D = d_1, \ldots, d_n$, which is distributed according to an unknown distribution $p_{\theta^*} \in \mathcal{M}$.
- We want to **estimate the parameter** θ^* from the data D.

Maximum Likelihood Parameter Estimation

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Parameter Estimation:

- Model $\mathcal{M} = \{p_{\theta} \mid \theta \in \Theta\}$ with parameter θ . (Θ is the set of possible parameter values.)
- Data $D = d_1, \ldots, d_n$, which is distributed according to an unknown distribution $p_{\theta^*} \in \mathcal{M}$.
- We want to **estimate the parameter** θ^* from the data D.

Maximum Likelihood:

Maximum likelihood parameter estimation selects the parameter $\hat{\theta}$ that maximizes the density² of the data:

$$\hat{\theta} = \arg\max_{\theta} p_{\theta}(D)$$

 $^{^{2}}$ If D takes values in a finite sample space, then the probability mass is used instead of the density.

Maximum Likelihood in the Bernoulli Model

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Bernoulli distribution for n outcomes:

- Given binary data $D = y_1, \dots, y_n$, we want to predict y_{n+1} .
- We assume that the outcomes in D are i.i.d. according to a Bernoulli distribution.
- If n_0 and n_1 respectively denote the number of zeroes and ones in D, then

$$p_{\theta}(D) = \theta^{n_1} (1 - \theta)^{n_0}$$

Maximum Likelihood:³

$$\hat{\theta} = \arg\max_{\theta} \theta^{n_1} (1 - \theta)^{n_0} = \arg\max_{\theta} n_1 \ln \theta + n_0 \ln(1 - \theta)$$

Solving
$$\frac{d}{d\theta} n_1 \ln \theta + n_0 \ln (1 - \theta) = 0$$
, gives: $\hat{\theta} = \frac{n_1}{n_1 + n_0} = \frac{n_1}{n}$.

³Ignoring minor technical issues for $\theta = 0$ or $\theta = 1$.

Least Mean Squares as Maximum Likelihood

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Model with normally distributed noise:

- Suppose we get i.i.d. data $D = (y_1, x_1)^\top, \dots, (y_n, x_n)^\top$.
- We use the model of second degree polynomials with normally distributed noise, with $\mu=0$ and $\sigma=1$.
- Then, writing x^n for x_1, \ldots, x_n ,

$$p_{\mathbf{w},x^n}(y_1,\ldots,y_n) = \prod_{i=1}^n p_{\mathbf{w},x_i}(y_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{(y_i - h_{\mathbf{w}}(x_i))^2}{2}}$$

Least Mean Squares as Maximum Likelihood

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Model with normally distributed noise:

- Suppose we get i.i.d. data $D = (y_1, x_1)^\top, \dots, (y_n, x_n)^\top$.
- We use the model of second degree polynomials with normally distributed noise, with $\mu=0$ and $\sigma=1$.
- Then, writing x^n for x_1, \ldots, x_n ,

$$p_{\mathbf{w},x^n}(y_1,\ldots,y_n) = \prod_{i=1}^n p_{\mathbf{w},x_i}(y_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{(y_i - h_{\mathbf{w}}(x_i))^2}{2}}$$

Maximum likelihood gives least mean squares:

$$\arg\max_{\mathbf{w}} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{(y_i - h_{\mathbf{w}}(x_i))^2}{2}} = \arg\max_{\mathbf{w}} \ln\prod_{i=1}^{n} e^{-\frac{(y_i - h_{\mathbf{w}}(x_i))^2}{2}}$$
$$= \arg\min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - h_{\mathbf{w}}(x_i))^2$$

Least Mean Squares as Maximum Likelihood

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Model with normally distributed noise:

- Suppose we get i.i.d. data $D = (y_1, x_1)^\top, \dots, (y_n, x_n)^\top$.
- We use the model of second degree polynomials with normally distributed noise, with $\mu=0$ and $\sigma=1$.
- Then, writing x^n for x_1, \ldots, x_n ,

$$p_{\mathbf{w},x^n}(y_1,\ldots,y_n) = \prod_{i=1}^n p_{\mathbf{w},x_i}(y_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{(y_i - h_{\mathbf{w}}(x_i))^2}{2}}$$

Maximum likelihood gives least mean squares:

$$\arg\max_{\mathbf{w}} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{(y_i - h_{\mathbf{w}}(x_i))^2}{2}} = \arg\max_{\mathbf{w}} \ln\prod_{i=1}^{n} e^{-\frac{(y_i - h_{\mathbf{w}}(x_i))^2}{2}}$$
$$= \arg\min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - h_{\mathbf{w}}(x_i))^2$$

Remark: Maximum likelihood will overfit if we apply it to a very large hypothesis space/model. (E.g. high degree polynomials.)

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

- Rogier: Weka Demonstration
- Organisational Matters
- Naive Bayes Continued
- Probability Theory
 - I.I.D. Distributions
 - lack Distributions on $\mathbb R$
- Models
- Maximum Likelihood Parameter Estimation
- Bayesian Learning (Part 1)

Bayesian Learning

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Very important:

- Bayesian learning is a general framework for doing machine learning that can be used with any model.
- It avoids overfitting.
- It is widely used in machine learning.

Bayesian Learning

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

Very important:

- Bayesian learning is a general framework for doing machine learning that can be used with any model.
- It avoids overfitting.
- It is widely used in machine learning.

Motivation:

- A model $\mathcal{M} = \{P_{\theta} \mid \theta \in \Theta\}$ contains **many** distributions P_{θ} for the data $D \in \Omega$.
- Suppose we want to calculate the probability $P(\theta \mid D)$.
- Then this is not defined: What is P? What is its sample space?

The Bayesian Distribution

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

The Idea:

- We start with a model $\mathcal{M} = \{P_{\theta} \mid \theta \in \Theta\}$, which contains many distributions.
- Then we put a **prior distribution** π on the parameter θ .
- We get a single distribution P_{Bayes} on both parameters and data!

The Bayesian Distribution

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

The Idea:

- We start with a model $\mathcal{M} = \{P_{\theta} \mid \theta \in \Theta\}$, which contains many distributions.
- Then we put a **prior distribution** π on the parameter θ .
- We get a single distribution P_{Bayes} on both parameters and data!

The details:

$$P_{\mathsf{Bayes}}(\theta) = \pi(\theta) \quad \mathsf{and} \quad P_{\mathsf{Bayes}}(D \mid \theta) = P_{\theta}(D)$$

The Bayesian Distribution

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

The Idea:

- We start with a model $\mathcal{M} = \{P_{\theta} \mid \theta \in \Theta\}$, which contains many distributions.
- Then we put a **prior distribution** π on the parameter θ .
- We get a single distribution P_{Bayes} on both parameters and data!

The details:

$$P_{\mathsf{Bayes}}(\theta) = \pi(\theta) \quad \mathsf{and} \quad P_{\mathsf{Bayes}}(D \mid \theta) = P_{\theta}(D)$$

- P_{Bayes} is a **single** distribution on $\Omega' = \Omega \times \Theta$, which contains both the data and θ .
- Therefore $P_{\mathsf{Bayes}}(\theta \mid D)$ is well-defined.

Example

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

- Suppose our data consists of one binary outcome y.
- Consider the model $\mathcal{M} = \{P_{\theta} \mid \theta \in \{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\}\}$, where $P_{\theta}(y) = \theta^y (1 \theta)^{1-y}$ is a Bernoulli distribution.
- Take π to be the uniform distribution on $\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\}$.

Example

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

- Suppose our data consists of one binary outcome y.
- Consider the model $\mathcal{M} = \{P_{\theta} \mid \theta \in \{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\}\}$, where $P_{\theta}(y) = \theta^{y}(1-\theta)^{1-y}$ is a Bernoulli distribution.
- Take π to be the uniform distribution on $\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\}$.

$$\begin{split} P_{\text{Bayes}}\left(y=1,\theta=\frac{1}{2}\right) &= P_{\text{Bayes}}\left(y=1\mid\theta=\frac{1}{2}\right)P_{\text{Bayes}}\left(\theta=\frac{1}{2}\right)\\ &= P_{\frac{1}{2}}(1)\cdot\pi\left(\frac{1}{2}\right) = \frac{1}{2}\cdot\frac{1}{3} = \frac{1}{6} \end{split}$$

$$\begin{split} P_{\text{Bayes}}\left(y=0,\theta=\frac{1}{4}\right) &= P_{\text{Bayes}}\left(y=0\mid\theta=\frac{1}{4}\right)P_{\text{Bayes}}\left(\theta=\frac{1}{4}\right)\\ &= P_{\frac{1}{4}}(0)\cdot\pi\left(\frac{1}{4}\right) = \frac{3}{4}\cdot\frac{1}{3} = \frac{1}{4} \end{split}$$

Different Interpretations of Probability

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

• Suppose P is a distribution on Ω and $A \subseteq \Omega$ is an event.

Frequentist: If we perform this same experiment n times, then the relative frequency of observing an outcome $\omega \in A$ goes to P(A) as $n \to \infty$.

Subjective Bayesian:⁴ Before observing the outcome of the experiment, P(A) is our degree of belief that we will get an outcome $\omega \in A$.

⁴There are other Bayesian interpretations of probability as well.

Different Interpretations of Probability

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

Bayesian Learning

• Suppose P is a distribution on Ω and $A \subseteq \Omega$ is an event.

Frequentist: If we perform this same experiment n times, then the relative frequency of observing an outcome $\omega \in A$ goes to P(A) as $n \to \infty$.

- Considers infinite number of repetitions of the experiment.
- Requires that it is possible (in principle) to observe the outcome of the experiment.
- Objective: the same for everyone.

Subjective Bayesian:⁴ Before observing the outcome of the experiment, P(A) is our degree of belief that we will get an outcome $\omega \in A$.

- Considers only one repetition of the experiment.
- Does not require that we can observe the outcome of the experiment.
- Subjective: My probability may be different from your probability.

⁴There are other Bayesian interpretations of probability as well.

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

- Rogier: Weka Demonstration
- Organisational Matters
- Naive Bayes Continued
- Probability Theory
 - I.I.D. Distributions
 - lack Distributions on $\mathbb R$
- Models
- Maximum Likelihood Parameter Estimation
- Bayesian Learning (Part 1)

References

Weka Demonstration

Organisational Matters

Naive Bayes

Probability Theory

Models

Maximum Likelihood Parameter Estimation

- P. Domingos and M. Pazzani, "Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier", Proceedings of the 13th International Conference on Machine Learning, 1996
- A.N. Shiryaev, "Probability", Second Edition, 1996
- P. Grünwald, "The Minimum Description Length Principle", 2007
- T.M. Mitchell, "Machine Learning", McGraw-Hill, 1997