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Machine Learning 2007: Lecture 11

Instructor: Tim van Erven (Tim.van.Erven@cwi.nl)
Website: www.cwi.nl/˜erven/teaching/0708/ml/

November 28, 2007

www.cwi.nl/~erven/teaching/0708/ml/
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Guest lecture:

● Next week, Peter Grünwald will give a special guest lecture
about minimum description length (MDL) learning.

This Lecture versus Mitchell:

● Chapter 6 up to section 6.5.0 about Bayesian learning.
● I present things in a better order.
● Mitchell also covers the connection between MAP parameter

estimation and least squares linear regression: It is good for
you to study this, but I will not ask an exam question about it.
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Training data:

D =
y1 y2 y3 y4 y5 y6 y7 y8

0 1 0 1 0 1 0 1

Hypothesis Space:

H = {h1, h2, h3}

h1: yn = 0

h2: yn =

{

0 if n is odd

1 if n is even
h3: yn = 1
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Training data:

D =
y1 y2 y3 y4 y5 y6 y7 y8

0 1 0 1 0 1 0 1

Hypothesis Space:

H = {h1, h2, h3}

h1: yn = 0

h2: yn =

{

0 if n is odd

1 if n is even
h3: yn = 1

By simple list-then-eliminate:

● Only h2 is consistent with the training data.
● Therefore we predict, in accordance with h2, that y9 = 0.
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Models:

● We may view each hypothesis as probability distribution that
gives probability 1 to a certain outcome.

● A hypothesis space that contains such probabilistic
hypotheses is called a (statistical) model .

The previous hypotheses as distributions:

M = {P1, P2, P3}
P1: P1(yn = 0) = 1

P2: P2(yn = 0) =

(

1 if n is odd

0 if n is even

P3: P3(yn = 1) = 1
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Models:

● We may view each hypothesis as probability distribution that
gives probability 1 to a certain outcome.

● A hypothesis space that contains such probabilistic
hypotheses is called a (statistical) model .

The previous hypotheses as distributions:

M = {P1, P2, P3}
P1: P1(yn = 0) = 1

P2: P2(yn = 0) =

(

1 if n is odd

0 if n is even

P3: P3(yn = 1) = 1

List-then-eliminate still works:

● A probabilistic hypothesis is consistent with the data if it gives
positive probability to the data.



Prediction Example with Noise

Organisational
Matters

Models

Maximum Likelihood
Parameter Estimation

Probability Theory

Bayesian Learning

7 / 35

Noise:

● Using probabilistic hypotheses is natural when there is noise
in the data.

● Suppose we observe a measurement error with some (small)
probability ǫ.

This is easy to incorporate:

M = {P1, P2, P3}
P1: P1(yn = 0) = 1− ǫ

P2: P2(yn = 0) =

(

1− ǫ if n is odd

ǫ if n is even

P3: P3(yn = 1) = 1− ǫ
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Noise:

● Using probabilistic hypotheses is natural when there is noise
in the data.

● Suppose we observe a measurement error with some (small)
probability ǫ.

This is easy to incorporate:

M = {P1, P2, P3}
P1: P1(yn = 0) = 1− ǫ

P2: P2(yn = 0) =

(

1− ǫ if n is odd

ǫ if n is even

P3: P3(yn = 1) = 1− ǫ

List-then-eliminate does not work any more:

● For example, P1(D = 0, 1, 0, 1, 0, 1, 0, 1) = ǫ4(1 − ǫ)4.
● Typically many or all probabilistic hypotheses in our model will

be consistent with the data.
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Parameters index the elements of a hypothesis space:

H = {h1, h2, h3} ⇐⇒ H = {hθ | θ ∈ {1, 2, 3}}
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Parameters index the elements of a hypothesis space:

H = {h1, h2, h3} ⇐⇒ H = {hθ | θ ∈ {1, 2, 3}}

Usually in a convenient way:

Hypotheses are often expressed in terms of the parameters. In
linear regression for example:

H = {hw | w ∈ R
2} where hw : y = w0 + w1x.
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Parameters index the elements of a hypothesis space:

H = {h1, h2, h3} ⇐⇒ H = {hθ | θ ∈ {1, 2, 3}}

Usually in a convenient way:

Hypotheses are often expressed in terms of the parameters. In
linear regression for example:

H = {hw | w ∈ R
2} where hw : y = w0 + w1x.

Example where the hypothesis space is a model:

For example in prediction of binary outcomes:

M =

{

Pθ | θ ∈

{

1

4
,
1

2
,
3

4

}}

where Pθ(yn = 1) = θ.
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Training data and model:

D =
y1 y2 y3 y4 y5 y6 y7 y8

0 1 1 1 0 1 1 1

M =

{

Pθ | θ ∈

{

1

4
,
1

2
,
3

4

}}

where Pθ(yn = 1) = θ.

Likelihood:

θ 1/4 1/2 3/4

Pθ(D) (1/4)6(3/4)2 (1/2)8 (3/4)6(1/4)2

= 9/65536 = 256/65536 = 729/65536

Maximum Likelihood Parameter Estimation:

θ̂ = arg maxθ Pθ(D) = 3/4
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For any two events A and B:

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)
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● Suppose Ω = {a, b, c, d, e, f, g}.
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● Suppose Ω = {a, b, c, d, e, f, g}.
● A partition of Ω cuts it into parts:

✦ Let the parts be A1 = {a, b}, A2 = {c, d, e} and
A3 = {f, g}

✦ The parts do not overlap, and together cover Ω.
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● Suppose Ω = {a, b, c, d, e, f, g}.
● A partition of Ω cuts it into parts:

✦ Let the parts be A1 = {a, b}, A2 = {c, d, e} and
A3 = {f, g}

✦ The parts do not overlap, and together cover Ω.

● B = {b, d, f}
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● Suppose Ω = {a, b, c, d, e, f, g}.
● A partition of Ω cuts it into parts:

✦ Let the parts be A1 = {a, b}, A2 = {c, d, e} and
A3 = {f, g}

✦ The parts do not overlap, and together cover Ω.

● B = {b, d, f}

Law of Total Probability:

P (B) =

3
∑

i=1

P (B ∩ Ai) =

3
∑

i=1

P (B | Ai)P (Ai)
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● Suppose we throw a blue and a red die.
● Let X and Y be random variables, where

X: outcome blue die; Y : outcome red die
● If we only know P (X,Y ), how do we compute P (X)?
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● Suppose we throw a blue and a red die.
● Let X and Y be random variables, where

X: outcome blue die; Y : outcome red die
● If we only know P (X,Y ), how do we compute P (X)?

Marginal Probability of X:

X \ Y 1 2 3 4 5 6
1 1/6
2 1

36

1

36

1

36

1

36

1

36

1

36
1/6

3 1/6
4 P (X, Y ) 1/6
5 1/6
6 1/6

1/6 1/6 1/6 1/6 1/6 1/6 1

P (X = 2) =
6

∑

y=1

P (X = 2, Y = y) = 1/6
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Very popular:

● Bayesian learning can be used with any model, and even if
we have multiple models.

● It is widely used in machine learning.

Nice properties:

● It avoids overfitting.
● Makes preference bias clearly visible.
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Very popular:

● Bayesian learning can be used with any model, and even if
we have multiple models.

● It is widely used in machine learning.

Nice properties:

● It avoids overfitting.
● Makes preference bias clearly visible.

Main idea:

● Given some model with parameter θ, construct a single
distribution PBayes on both data D and the parameter θ.

● Now we can compute the probability of

✦ parameters given the training data: PBayes(θ = 3/4 | D);
✦ the next outcome given the training data:

PBayes(yn+1 = 1 | D).
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Prior Distribution:

● A model contains many distributions. For example,
M = {Pθ | θ ∈ {1, . . . , 10}}.

● We put a prior distribution π on the parameter θ.
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Prior Distribution:

● A model contains many distributions. For example,
M = {Pθ | θ ∈ {1, . . . , 10}}.

● We put a prior distribution π on the parameter θ.
● π(θ) reflects our a priori 1 degree of belief that θ is the right

parameter.
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Prior Distribution:

● A model contains many distributions. For example,
M = {Pθ | θ ∈ {1, . . . , 10}}.

● We put a prior distribution π on the parameter θ.
● π(θ) reflects our a priori 1 degree of belief that θ is the right

parameter.

Definition of PBayes :

● The single distribution PBayes on both parameters and data is
defined by:

PBayes(θ) = π(θ) and PBayes(D | θ)= Pθ(D)

● This implies that PBayes(D, θ) = Pθ(D)π(θ)

1“A priori” means before seeing the data.
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Model, prior and training data:

● Model: M =
{

Pθ | θ ∈
{

1

4
, 1

2
, 3

4

}}

where Pθ(yn = 1) = θ.

● Prior: π
(

1

4

)

= π
(

1

2

)

= π
(

3

4

)

= 1

3

● Data: D =
y1 y2 y3 y4 y5 y6 y7 y8

0 1 1 1 0 1 1 1

Joint Probabilities:

PBayes(D, θ) = Pθ(D)π(θ):

θ PBayes(D, θ)

1/4 1/3 · (1/4)6(3/4)2 = 9/196608

1/2 1/3 · (1/2)8 = 256/196608

3/4 1/3 · (3/4)6(1/4)2 = 729/196608
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The marginal probability of the data:

PBayes(D) =
∑

θ

PBayes(D, θ) =
∑

θ

Pθ(D)π(θ)

Example:

θ PBayes(D, θ)

1/4 9/196608
1/2 256/196608
3/4 729/196608

=⇒

PBayes(D) =
9 + 256 + 729

196608

=
994

196608

Remarks:

● The marginal probability PBayes(D) is a weighted average of
Pθ(D), where each θ has the weight π(θ).

● This weight π(θ) does not depend on the data.
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Updating beliefs:

● The prior π(θ) gives the probability of θ before we observe
any data.

● The posterior distribution PBayes(θ | D) gives the probability
of θ after observing data D.
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Updating beliefs:

● The prior π(θ) gives the probability of θ before we observe
any data.

● The posterior distribution PBayes(θ | D) gives the probability
of θ after observing data D.

● This is the Bayesian way to update beliefs about parameters
based on data D.
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Updating beliefs:

● The prior π(θ) gives the probability of θ before we observe
any data.

● The posterior distribution PBayes(θ | D) gives the probability
of θ after observing data D.

● This is the Bayesian way to update beliefs about parameters
based on data D.

Notation:

● The prior and the posterior both represent beliefs about θ.
● It is therefore common to write π(θ | D) for PBayes(θ | D).
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Previous example continued:

θ PBayes(D, θ)

1/4 9/196608
1/2 256/196608
3/4 729/196608

=⇒ PBayes(D) =
994

196608

Posterior probability:

π(θ | D) =
PBayes(D, θ)

PBayes(D)
=⇒

θ π(θ | D)

1/4 9/196608

994/196608
= 9/994

1/2 256/196608

994/196608
= 256/994

3/4 729/196608

994/196608
= 729/994

● We started with equal prior probabilities.
● After observing the data, θ = 3/4 is considered much more

likely than the other θ.
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Definition:
The maximum a posteriori (MAP) parameter estimate is the
parameter with largest posterior (= a posteriori) probability:

θMAP = arg maxθ π(θ | D)

Example continued:

θ π(θ | D)

1/4 9/994
1/2 256/994
3/4 729/994

=⇒ θMAP = 3/4



Overview

Organisational
Matters

Models

Maximum Likelihood
Parameter Estimation

Probability Theory

Bayesian Learning

26 / 35

● Organisational Matters
● Models
● Maximum Likelihood Parameter Estimation
● Probability Theory
● Bayesian Learning

✦ The Bayesian Distribution
✦ From Prior to Posterior
✦ MAP Parameter Estimation
✦ Bayesian Predictions
✦ Discussion
✦ Advanced Issues



The Predictive Distribution

Organisational
Matters

Models

Maximum Likelihood
Parameter Estimation

Probability Theory

Bayesian Learning

27 / 35

Definition:

● Suppose D = y1, . . . , yn.
● Then the Bayesian predictive distribution is PBayes(yn+1 | D).

Understanding the predictive distribution:

It can be shown that:

PBayes(yn+1 | D) =
∑

θ

Pθ(yn+1)π(θ | D)

● The predictive probability PBayes(yn+1 | D) is a weighted
average of Pθ(yn+1), where each θ has the weight π(θ | D).
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Previous example continued:

● Recall that in this example Pθ(yn+1 = 1) = θ.

θ π(θ | D)

0.25 9/994
0.5 256/994
0.75 729/994

Predictive probability:

PBayes(yn+1 = 1 | D) =
3

∑

θ=1

Pθ(yn+1 = 1)π(θ | D)

=
1

4
·

9

994
+

1

2
·
256

994
+

3

4
·
729

994
≈ 0.68

● Notice that 0.68 is pretty close to 0.75.
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● Prediction with map: PθMAP(yn+1), where
θMAP = arg maxθ π(θ | D)

● Predictive distribution:
∑

θ Pθ(yn+1)π(θ | D)

New example:

Two hypotheses that predict a 1 with high probability, one MAP
hypothesis that predicts a 0 with high probability:

Pθ(yn+1 = 1) 1/10 8/10 9/10

π(θ | D) 4/10 3/10 3/10

PBayes(yn+1 = 1 | D) =
4 · 1

100
+

3 · 8

100
+

3 · 9

100
=

55

100

● Together the hypotheses that predict 1 have higher posterior
probability than the MAP hypothesis that predicts 0.

● If we use the MAP, then we ignore their predictions!
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Marginal probability of the data:

PBayes(D) =
∑

θ

PBayes(D, θ) =
∑

θ

Pθ(D)π(θ)

Posterior distribution:

π(θ | D) =
PBayes(D, θ)

PBayes(D)
=

Pθ(D)π(θ)

PBayes(D)

Dependence on the prior:

● The most important probabilities in Bayesian inference.
● Both use Pθ(D) and π(θ).
● Pθ(D) depends on the data, but π(θ) does not!
● π(θ) determines the relative importance of each parameter θ.



The Prior Determines the Preference Bias

Organisational
Matters

Models

Maximum Likelihood
Parameter Estimation

Probability Theory

Bayesian Learning

31 / 35

Marginal probability of the data:

PBayes(D) =
∑

θ

PBayes(D, θ) =
∑

θ

Pθ(D)π(θ)

Posterior distribution:

π(θ | D) =
PBayes(D, θ)

PBayes(D)
=

Pθ(D)π(θ)

PBayes(D)

Dependence on the prior:

● The most important probabilities in Bayesian inference.
● Both use Pθ(D) and π(θ).
● Pθ(D) depends on the data, but π(θ) does not!
● π(θ) determines the relative importance of each parameter θ.
● However, if we get a lot of data, then the effect of Pθ(D)

becomes much more important than the effect of the prior.
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● Suppose P is a distribution on Ω = {a, b, c, d, e, f, g} and
A = {c, d, f} is an event.

Frequentist: If we perform this
same experiment n times, then
the relative frequency of ob-
serving an outcome in A goes to
P (A) as n → ∞.

Subjective Bayesian: 2 Be-
fore observing the outcome of
the experiment, P (A) is our
degree of belief that we will
get an outcome in A.

2There are other Bayesian interpretations of probability as well.
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● Suppose P is a distribution on Ω = {a, b, c, d, e, f, g} and
A = {c, d, f} is an event.

Frequentist: If we perform this
same experiment n times, then
the relative frequency of ob-
serving an outcome in A goes to
P (A) as n → ∞.

● Considers infinite number of
repetitions of the experiment.

● Requires that it is possible (in
principle) to observe the out-
come of the experiment.

● Objective, the same for every-
one.

Subjective Bayesian: 2 Be-
fore observing the outcome of
the experiment, P (A) is our
degree of belief that we will
get an outcome in A.

● Considers only one repeti-
tion of the experiment.

● Does not require that we
can observe the outcome
of the experiment.

● Subjective: My probability
may be different from your
probability.

2There are other Bayesian interpretations of probability as well.
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