Machine Learning 2007: Lecture 11

Instructor: Tim van Erven (Tim.van.Erven@cwi.nl)

Website: www.cwi.nl/~erven/teaching/0708/ml/

November 28, 2007

Overview

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Organisational Matters
- Models
- Maximum Likelihood Parameter Estimation
- Probability Theory
- Bayesian Learning
 - The Bayesian Distribution
 - From Prior to Posterior
 - MAP Parameter Estimation
 - Bayesian Predictions
 - Discussion
 - Advanced Issues

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Guest lecture:

 Next week, Peter Grünwald will give a special guest lecture about minimum description length (MDL) learning.

This Lecture versus Mitchell:

- Chapter 6 up to section 6.5.0 about Bayesian learning.
- I present things in a better order.
- Mitchell also covers the connection between MAP parameter estimation and least squares linear regression: It is good for you to study this, but I will not ask an exam question about it.

Overview

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Organisational Matters
- Models
- Maximum Likelihood Parameter Estimation
- Probability Theory
- Bayesian Learning
 - The Bayesian Distribution
 - From Prior to Posterior
 - MAP Parameter Estimation
 - Bayesian Predictions
 - Discussion
 - Advanced Issues

Prediction Example without Noise

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Training data:

$$D = \begin{vmatrix} y_1 & y_2 & y_3 & y_4 & y_5 & y_6 & y_7 & y_8 \\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{vmatrix}$$

Hypothesis Space:

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$h_1$$
: $y_n=0$
 h_2 : $y_n=\begin{cases} 0 & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even} \end{cases}$
 h_3 : $y_n=1$

Prediction Example without Noise

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Training data:

$$D = \begin{vmatrix} y_1 & y_2 & y_3 & y_4 & y_5 & y_6 & y_7 & y_8 \\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{vmatrix}$$

Hypothesis Space:

$$\mathcal{H}=\{h_1,h_2,h_3\}$$
 $h_1: \quad y_n=0$ $h_2: \quad y_n=egin{cases} 0 & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even} \end{cases}$ $h_3: \quad y_n=1$

By simple list-then-eliminate:

- Only h_2 is consistent with the training data.
- Therefore we predict, in accordance with h_2 , that $y_9 = 0$.

Turning Hypotheses into Distributions

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Models:

- We may view each hypothesis as probability distribution that gives probability 1 to a certain outcome.
- A hypothesis space that contains such probabilistic hypotheses is called a (statistical) model.

The previous hypotheses as distributions:

$$\mathcal{M}=\{P_1,P_2,P_3\}$$

$$P_1\colon \ P_1(y_n=0)=1$$

$$P_2\colon \ P_2(y_n=0)=\begin{cases} 1 & \text{if n is odd} \\ 0 & \text{if n is even} \end{cases}$$

$$P_3\colon \ P_3(y_n=1)=1$$

Turning Hypotheses into Distributions

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Models:

- We may view each hypothesis as probability distribution that gives probability 1 to a certain outcome.
- A hypothesis space that contains such probabilistic hypotheses is called a (statistical) **model**.

The previous hypotheses as distributions:

$$\mathcal{M}=\{P_1,P_2,P_3\}$$

$$P_1\colon \ P_1(y_n=0)=1$$

$$P_2\colon \ P_2(y_n=0)=\begin{cases} 1 & \text{if n is odd} \\ 0 & \text{if n is even} \end{cases}$$

$$P_3\colon \ P_3(y_n=1)=1$$

List-then-eliminate still works:

 A probabilistic hypothesis is consistent with the data if it gives positive probability to the data.

Prediction Example with Noise

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Noise:

- Using probabilistic hypotheses is natural when there is noise in the data.
- Suppose we observe a measurement error with some (small) probability ϵ .

This is easy to incorporate:

$$\mathcal{M}=\{P_1,P_2,P_3\}$$

$$P_1\colon \ P_1(y_n=0)=1-\epsilon$$

$$P_2\colon \ P_2(y_n=0)=\begin{cases} 1-\epsilon & \text{if n is odd} \\ \epsilon & \text{if n is even} \end{cases}$$

$$P_3\colon \ P_3(y_n=1)=1-\epsilon$$

Prediction Example with Noise

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Noise:

- Using probabilistic hypotheses is natural when there is noise in the data.
- Suppose we observe a measurement error with some (small) probability ϵ .

This is easy to incorporate:

$$\mathcal{M}=\{P_1,P_2,P_3\}$$
 $P_1\colon P_1(y_n=0)=1-\epsilon$
$$P_2\colon P_2(y_n=0)=\begin{cases} 1-\epsilon & \text{if n is odd} \\ \epsilon & \text{if n is even} \end{cases}$$
 $P_3\colon P_3(y_n=1)=1-\epsilon$

List-then-eliminate does not work any more:

- For example, $P_1(D=0,1,0,1,0,1,0,1)=\epsilon^4(1-\epsilon)^4$.
- Typically many or all probabilistic hypotheses in our model will be consistent with the data.

Overview

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Organisational Matters
- Models
- Maximum Likelihood Parameter Estimation
- Probability Theory
- Bayesian Learning
 - The Bayesian Distribution
 - From Prior to Posterior
 - MAP Parameter Estimation
 - Bayesian Predictions
 - Discussion
 - Advanced Issues

Parameters

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Parameters index the elements of a hypothesis space:

$$\mathcal{H} = \{h_1, h_2, h_3\} \qquad \iff \qquad \mathcal{H} = \{h_\theta \mid \theta \in \{1, 2, 3\}\}$$

Parameters

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Parameters index the elements of a hypothesis space:

$$\mathcal{H} = \{h_1, h_2, h_3\} \qquad \iff \qquad \mathcal{H} = \{h_\theta \mid \theta \in \{1, 2, 3\}\}$$

Usually in a convenient way:

Hypotheses are often expressed in terms of the parameters. In linear regression for example:

$$\mathcal{H} = \{h_{\mathbf{w}} \mid \mathbf{w} \in \mathbb{R}^2\}$$
 where $h_{\mathbf{w}} : y = w_0 + w_1 x$.

Parameters

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Parameters index the elements of a hypothesis space:

$$\mathcal{H} = \{h_1, h_2, h_3\} \qquad \iff \qquad \mathcal{H} = \{h_\theta \mid \theta \in \{1, 2, 3\}\}$$

Usually in a convenient way:

Hypotheses are often expressed in terms of the parameters. In linear regression for example:

$$\mathcal{H} = \{h_{\mathbf{w}} \mid \mathbf{w} \in \mathbb{R}^2\}$$
 where $h_{\mathbf{w}} : y = w_0 + w_1 x$.

Example where the hypothesis space is a model:

For example in prediction of binary outcomes:

$$\mathcal{M} = \left\{ P_{\theta} \mid \theta \in \left\{ \frac{1}{4}, \frac{1}{2}, \frac{3}{4} \right\} \right\} \quad \text{where } P_{\theta}(y_n = 1) = \theta.$$

Maximum Likelihood Parameter Estimation

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Training data and model:

$$D = \begin{bmatrix} y_1 & y_2 & y_3 & y_4 & y_5 & y_6 & y_7 & y_8 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$\mathcal{M} = \left\{ P_{\theta} \mid \theta \in \left\{ \frac{1}{4}, \frac{1}{2}, \frac{3}{4} \right\} \right\} \quad \text{where } P_{\theta}(y_n = 1) = \theta.$$

Likelihood:

θ	1/4	1/2	3/4
$P_{\theta}(D)$	$(1/4)^6(3/4)^2$	$(1/2)^8$	$(3/4)^6(1/4)^2$
	= 9/65536	=256/65536	=729/65536

Maximum Likelihood Parameter Estimation:

$$\hat{\theta} = \arg\max_{\theta} P_{\theta}(D) = 3/4$$

Overview

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Organisational Matters
- Models
- Maximum Likelihood Parameter Estimation
- Probability Theory
- Bayesian Learning
 - The Bayesian Distribution
 - From Prior to Posterior
 - MAP Parameter Estimation
 - Bayesian Predictions
 - Discussion
 - Advanced Issues

Relating Unions and Intersections

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

For any two events A and B:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

• Suppose $\Omega = \{a, b, c, d, e, f, g\}$.

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Suppose $\Omega = \{a, b, c, d, e, f, g\}$.
- A **partition** of Ω cuts it into parts:
 - Let the parts be $A_1 = \{a, b\}$, $A_2 = \{c, d, e\}$ and $A_3 = \{f, g\}$
 - ullet The parts do not overlap, and together cover Ω .

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Suppose $\Omega = \{a, b, c, d, e, f, g\}$.
- A **partition** of Ω cuts it into parts:
 - Let the parts be $A_1 = \{a, b\}$, $A_2 = \{c, d, e\}$ and $A_3 = \{f, g\}$
 - \bullet The parts do not overlap, and together cover Ω .
- $\bullet \quad B = \{b, d, f\}$

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

- Suppose $\Omega = \{a, b, c, d, e, f, g\}$.
- A **partition** of Ω cuts it into parts:
 - Let the parts be $A_1 = \{a, b\}$, $A_2 = \{c, d, e\}$ and $A_3 = \{f, g\}$
 - lacktriangle The parts do not overlap, and together cover Ω .
- $B = \{b, d, f\}$

Law of Total Probability:

$$P(B) = \sum_{i=1}^{3} P(B \cap A_i) = \sum_{i=1}^{3} P(B \mid A_i) P(A_i)$$

Marginal Probability

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Suppose we throw a blue and a red die.
- Let X and Y be random variables, where
 X: outcome blue die; Y: outcome red die
- If we only know P(X,Y), how do we compute P(X)?

Marginal Probability

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

- Suppose we throw a blue and a red die.
- Let X and Y be random variables, where
 X: outcome blue die; Y: outcome red die
- If we only know P(X,Y), how do we compute P(X)?

Marginal Probability of X:

$X \setminus Y$	1	2	3	4	5	6	
1							1/6
2	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	1/6
3							1/6
4			P(X	(X,Y)			1/6
5							1/6
6							1/6
	1/6	1/6	1/6	1/6	1/6	1/6	1
		6					
$P(X=2) = \sum P(X=2, Y=y) = 1/6$							
`		y=1	`	•	2 /	,	

Overview

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Organisational Matters
- Models
- Maximum Likelihood Parameter Estimation
- Probability Theory
- Bayesian Learning
 - The Bayesian Distribution
 - From Prior to Posterior
 - MAP Parameter Estimation
 - Bayesian Predictions
 - Discussion
 - Advanced Issues

Bayesian Learning

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Very popular:

- Bayesian learning can be used with any model, and even if we have multiple models.
- It is widely used in machine learning.

Nice properties:

- It avoids overfitting.
- Makes preference bias clearly visible.

Bayesian Learning

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Very popular:

- Bayesian learning can be used with any model, and even if we have multiple models.
- It is widely used in machine learning.

Nice properties:

- It avoids overfitting.
- Makes preference bias clearly visible.

Main idea:

- Given some model with parameter θ , construct a **single** distribution P_{Bayes} on both data D and the parameter θ .
- Now we can compute the probability of
 - parameters given the training data: $P_{\text{Bayes}}(\theta = 3/4 \mid D)$;
 - the next outcome given the training data:

$$P_{\sf Bayes}(y_{n+1} = 1 \mid D)$$
.

Overview

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Organisational Matters
- Models
- Maximum Likelihood Parameter Estimation
- Probability Theory
- Bayesian Learning
 - The Bayesian Distribution
 - From Prior to Posterior
 - MAP Parameter Estimation
 - Bayesian Predictions
 - Discussion
 - Advanced Issues

The Bayesian Distribution

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Prior Distribution:

- A model contains **many** distributions. For example, $\mathcal{M} = \{P_{\theta} \mid \theta \in \{1, ..., 10\}\}.$
- We put a **prior distribution** π on the parameter θ .

The Bayesian Distribution

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Prior Distribution:

- A model contains **many** distributions. For example, $\mathcal{M} = \{P_{\theta} \mid \theta \in \{1, \dots, 10\}\}.$
- We put a **prior distribution** π on the parameter θ .
- $\pi(\theta)$ reflects our *a priori* ¹ degree of belief that θ is the right parameter.

The Bayesian Distribution

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Prior Distribution:

- A model contains **many** distributions. For example, $\mathcal{M} = \{P_{\theta} \mid \theta \in \{1, ..., 10\}\}.$
- We put a **prior distribution** π on the parameter θ .
- $\pi(\theta)$ reflects our *a priori* ¹ degree of belief that θ is the right parameter.

Definition of P_{Bayes} :

• The **single** distribution P_{Bayes} on both parameters and data is defined by:

$$P_{\mathsf{Bayes}}(\theta) = \pi(\theta) \quad \mathsf{and} \quad P_{\mathsf{Bayes}}(D \mid \theta) = P_{\theta}(D)$$

• This implies that $P_{\mathsf{Baves}}(D,\theta) = P_{\theta}(D)\pi(\theta)$

¹"A priori" means before seeing the data.

Example

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Model, prior and training data:

- Model: $\mathcal{M}=\left\{P_{\theta}\mid \theta\in\left\{\frac{1}{4},\frac{1}{2},\frac{3}{4}\right\}\right\}$ where $P_{\theta}(y_n=1)=\theta$.
- Prior: $\pi\left(\frac{1}{4}\right) = \pi\left(\frac{1}{2}\right) = \pi\left(\frac{3}{4}\right) = \frac{1}{3}$
- Data: $D = \begin{vmatrix} y_1 & y_2 & y_3 & y_4 & y_5 & y_6 & y_7 & y_8 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \end{vmatrix}$

Joint Probabilities:

$$P_{\mathsf{Bayes}}(D,\theta) = P_{\theta}(D)\pi(\theta)$$
:

θ	$P_{Bayes}(D, \theta)$				
1/4	$1/3 \cdot (1/4)^6 (3/4)^2$	=	9/196608		
1/2	$1/3 \cdot (1/2)^8$	=	256/196608		
3/4	$1/3 \cdot (3/4)^6 (1/4)^2$	=	729/196608		

The Marginal Probability of the Data

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

The marginal probability of the data:

$$P_{\mathsf{Bayes}}(D) = \sum_{\theta} P_{\mathsf{Bayes}}(D, \theta) = \sum_{\theta} P_{\theta}(D) \pi(\theta)$$

Example:

θ	$P_{Bayes}(D,\theta)$	$P_{Bayes}(D) = \frac{9 + 256 + 72}{106608}$	9
1/4	9/196608	$\Longrightarrow 196608$	
1/2	256/196608	994	
3/4	729/196608	$=\frac{196608}{196608}$	

Remarks:

- The marginal probability $P_{\mathsf{Bayes}}(D)$ is a weighted average of $P_{\theta}(D)$, where each θ has the weight $\pi(\theta)$.
- This weight $\pi(\theta)$ does not depend on the data.

Overview

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Organisational Matters
- Models
- Maximum Likelihood Parameter Estimation
- Probability Theory
- Bayesian Learning
 - The Bayesian Distribution
 - From Prior to Posterior
 - MAP Parameter Estimation
 - Bayesian Predictions
 - Discussion
 - Advanced Issues

From Prior to Posterior Distribution

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Updating beliefs:

- The prior $\pi(\theta)$ gives the probability of θ before we observe any data.
- The **posterior distribution** $P_{\text{Bayes}}(\theta \mid D)$ gives the probability of θ after observing data D.

From Prior to Posterior Distribution

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Updating beliefs:

- The prior $\pi(\theta)$ gives the probability of θ before we observe any data.
- The **posterior distribution** $P_{\text{Bayes}}(\theta \mid D)$ gives the probability of θ after observing data D.
- This is the Bayesian way to update beliefs about parameters based on data D.

From Prior to Posterior Distribution

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Updating beliefs:

- The prior $\pi(\theta)$ gives the probability of θ before we observe any data.
- The **posterior distribution** $P_{\text{Bayes}}(\theta \mid D)$ gives the probability of θ after observing data D.
- This is the Bayesian way to update beliefs about parameters based on data D.

Notation:

- The prior and the posterior both represent beliefs about θ .
- It is therefore common to write $\pi(\theta \mid D)$ for $P_{\mathsf{Bayes}}(\theta \mid D)$.

Example

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Previous example continued:

θ	$P_{Bayes}(D, \theta)$		
1/4	9/196608		P_{-} (D) - 994
1/2	256/196608	\implies	$P_{Bayes}(D) = \frac{331}{196608}$
3/4	729/196608		

Posterior probability:

$$\pi(\theta \mid D) = \frac{P_{\mathsf{Bayes}}(D, \theta)}{P_{\mathsf{Bayes}}(D)} \Longrightarrow$$

θ	$\pi(\theta \mid D)$		
1/4	$\frac{9/196608}{994/196608}$	=	9/994
1/2	$\frac{256/196608}{994/196608}$	=	256/994
3/4	$\frac{729/196608}{994/196608}$	=	729/994

- We started with equal prior probabilities.
- After observing the data, $\theta = 3/4$ is considered much more likely than the other θ .

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Organisational Matters
- Models
- Maximum Likelihood Parameter Estimation
- Probability Theory
- Bayesian Learning
 - The Bayesian Distribution
 - From Prior to Posterior
 - MAP Parameter Estimation
 - Bayesian Predictions
 - Discussion
 - Advanced Issues

MAP Parameter Estimation

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Definition:

The maximum a posteriori (MAP) parameter estimate is the parameter with largest posterior (= a posteriori) probability:

$$\theta_{\mathsf{MAP}} = \arg\max_{\theta} \pi(\theta \mid D)$$

Example continued:

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Organisational Matters
- Models
- Maximum Likelihood Parameter Estimation
- Probability Theory
- Bayesian Learning
 - The Bayesian Distribution
 - From Prior to Posterior
 - MAP Parameter Estimation
 - Bayesian Predictions
 - Discussion
 - Advanced Issues

The Predictive Distribution

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Definition:

- Suppose $D = y_1, \ldots, y_n$.
- Then the Bayesian predictive distribution is $P_{\text{Bayes}}(y_{n+1} \mid D)$.

Understanding the predictive distribution:

It can be shown that:

$$P_{\mathsf{Bayes}}(y_{n+1} \mid D) = \sum_{\theta} P_{\theta}(y_{n+1}) \pi(\theta \mid D)$$

• The predictive probability $P_{\mathsf{Bayes}}(y_{n+1} \mid D)$ is a weighted average of $P_{\theta}(y_{n+1})$, where each θ has the weight $\pi(\theta \mid D)$.

Example Continued

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Previous example continued:

• Recall that in this example $P_{\theta}(y_{n+1} = 1) = \theta$.

θ	$\pi(\theta \mid D)$
0.25	9/994
0.5	256/994
0.75	729/994

Predictive probability:

$$P_{\text{Bayes}}(y_{n+1} = 1 \mid D) = \sum_{\theta=1}^{3} P_{\theta}(y_{n+1} = 1)\pi(\theta \mid D)$$
$$= \frac{1}{4} \cdot \frac{9}{994} + \frac{1}{2} \cdot \frac{256}{994} + \frac{3}{4} \cdot \frac{729}{994}$$
$$\approx 0.68$$

• Notice that 0.68 is pretty close to 0.75.

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Organisational Matters
- Models
- Maximum Likelihood Parameter Estimation
- Probability Theory
- Bayesian Learning
 - The Bayesian Distribution
 - From Prior to Posterior
 - MAP Parameter Estimation
 - Bayesian Predictions
 - Discussion
 - Advanced Issues

MAP versus Predictive Distribution

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

• Prediction with map: $P_{\theta_{MAP}}(y_{n+1})$, where $\theta_{MAP} = \arg \max_{\theta} \pi(\theta \mid D)$

• Predictive distribution: $\sum_{\theta} P_{\theta}(y_{n+1}) \pi(\theta \mid D)$

New example:

Two hypotheses that predict a 1 with high probability, one MAP hypothesis that predicts a 0 with high probability:

$$P_{\theta}(y_{n+1} = 1)$$
 | 1/10 | 8/10 | 9/10 | $\pi(\theta \mid D)$ | 4/10 | 3/10 | 3/10

$$P_{\text{Bayes}}(y_{n+1} = 1 \mid D) = \frac{4 \cdot 1}{100} + \frac{3 \cdot 8}{100} + \frac{3 \cdot 9}{100} = \frac{55}{100}$$

- Together the hypotheses that predict 1 have higher posterior probability than the MAP hypothesis that predicts 0.
- If we use the MAP, then we ignore their predictions!

The Prior Determines the Preference Bias

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Marginal probability of the data:

$$P_{\mathsf{Bayes}}(D) = \sum_{\theta} P_{\mathsf{Bayes}}(D, \theta) = \sum_{\theta} P_{\theta}(D) \pi(\theta)$$

Posterior distribution:

$$\pi(\theta \mid D) = \frac{P_{\mathsf{Bayes}}(D, \theta)}{P_{\mathsf{Bayes}}(D)} = \frac{P_{\theta}(D)\pi(\theta)}{P_{\mathsf{Bayes}}(D)}$$

Dependence on the prior:

- The most important probabilities in Bayesian inference.
- Both use $P_{\theta}(D)$ and $\pi(\theta)$.
- $P_{\theta}(D)$ depends on the data, but $\pi(\theta)$ does not!
- \bullet $\pi(\theta)$ determines the relative importance of each parameter θ .

The Prior Determines the Preference Bias

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

Marginal probability of the data:

$$P_{\mathsf{Bayes}}(D) = \sum_{\theta} P_{\mathsf{Bayes}}(D, \theta) = \sum_{\theta} P_{\theta}(D) \pi(\theta)$$

Posterior distribution:

$$\pi(\theta \mid D) = \frac{P_{\mathsf{Bayes}}(D, \theta)}{P_{\mathsf{Bayes}}(D)} = \frac{P_{\theta}(D)\pi(\theta)}{P_{\mathsf{Bayes}}(D)}$$

Dependence on the prior:

- The most important probabilities in Bayesian inference.
- Both use $P_{\theta}(D)$ and $\pi(\theta)$.
- $P_{\theta}(D)$ depends on the data, but $\pi(\theta)$ does not!
- $\pi(\theta)$ determines the relative importance of each parameter θ .
- However, if we get a lot of data, then the effect of $P_{\theta}(D)$ becomes much more important than the effect of the prior.

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Organisational Matters
- Models
- Maximum Likelihood Parameter Estimation
- Probability Theory
- Bayesian Learning
 - The Bayesian Distribution
 - From Prior to Posterior
 - MAP Parameter Estimation
 - Bayesian Predictions
 - Discussion
 - Advanced Issues

Different Interpretations of Probability

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

• Suppose P is a distribution on $\Omega = \{a, b, c, d, e, f, g\}$ and $A = \{c, d, f\}$ is an event.

Frequentist: If we perform this same experiment n times, then the relative frequency of observing an outcome in A goes to P(A) as $n \to \infty$.

Subjective Bayesian:² Before observing the outcome of the experiment, P(A) is our degree of belief that we will get an outcome in A.

²There are other Bayesian interpretations of probability as well.

Different Interpretations of Probability

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

Bayesian Learning

• Suppose P is a distribution on $\Omega = \{a, b, c, d, e, f, g\}$ and $A = \{c, d, f\}$ is an event.

Frequentist: If we perform this same experiment n times, then the relative frequency of observing an outcome in A goes to P(A) as $n \to \infty$.

- Considers infinite number of repetitions of the experiment.
- Requires that it is possible (in principle) to observe the outcome of the experiment.
- Objective, the same for everyone.

Subjective Bayesian:² Before observing the outcome of the experiment, P(A) is our degree of belief that we will get an outcome in A.

- Considers only one repetition of the experiment.
- Does not require that we can observe the outcome of the experiment.
- Subjective: My probability may be different from your probability.

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- Organisational Matters
- Models
- Maximum Likelihood Parameter Estimation
- Probability Theory
- Bayesian Learning
 - The Bayesian Distribution
 - From Prior to Posterior
 - MAP Parameter Estimation
 - Bayesian Predictions
 - Discussion
 - Advanced Issues

References

Organisational Matters

Models

Maximum Likelihood Parameter Estimation

Probability Theory

- A.N. Shiryaev, "Probability", Second Edition, 1996
- P. Grünwald, "The Minimum Description Length Principle", 2007
- T.M. Mitchell, "Machine Learning", McGraw-Hill, 1997