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Given data D, pick the hypothesis h ∈ H that minimizes the
description length L(D) of the data, which is the sum of:

● the description length L(h) of hypothesis h
● the description length L(D | h) of the data D when encoded

‘with the help of the hypothesis h’.

L(D) = min
h∈H

L(h) + L(D | h)
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Given data D, pick the hypothesis h ∈ H that minimizes the
description length L(D) of the data, which is the sum of:

● the description length L(h) of hypothesis h
● the description length L(D | h) of the data D when encoded

‘with the help of the hypothesis h’.

L(D) = min
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L(h) + L(D | h)

complexity error

● For polynomials, the complexity is related to the degree of the
polynomial.

● The error is related to the sum of squared errors / the
goodness of fit.
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Given data D, pick the hypothesis h ∈ H that minimizes the
description length L(D) of the data, which is the sum of:

● the description length L(h) of hypothesis h
● the description length L(D | h) of the data D when encoded

‘with the help of the hypothesis h’.

L(D) = min
h∈H

L(h) + L(D | h)

complexity error

● For polynomials, the complexity is related to the degree of the
polynomial.

● The error is related to the sum of squared errors / the
goodness of fit.

● Crucial: Descriptions are based on a lossless code.
(Like (Win)Zip, not like JPG or MP3!)
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Given data D, pick the hypothesis h ∈ H that minimizes the
description length L(D) of the data, which is the sum of:

● the description length L(h) of hypothesis h
● the description length L(D | h) of the data D when encoded

‘with the help of the hypothesis h’.

L(D) = min
h∈H

L(h) + L(D | h)

complexity error

Remainder of the lecture: Making L(h) and L(D | h) precise .
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Code: A code C is a function that maps each object x ∈ X to a
unique finite binary string C(x).

● For example C(x) = 010.
● The ‘data alphabet’ X : (countable) set of all possible objects

that we may wish to encode
● C(x) is called the codeword for object x.
● Two different objects cannot have the same codeword.

(Otherwise we could not decode the codeword.)

Codelength: The codelength LC(x) for x is the length (in bits)
of the codeword C(x) for object x.

● For example, if C(x) = 010, then LC(x) = 3.
● The subscript C emphasizes that this length depends on the

code C; It is sometimes omitted.
● In MDL, we always want small codelengths.
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Uniform code:

A uniform code assigns codewords of the same length to all
objects in X .

Example:

● Let X = {a, b, c, d}.
● One possible uniform code for X is:

C(a) = 00, C(b) = 01, C(c) = 10, C(d) = 11
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Uniform code:

A uniform code assigns codewords of the same length to all
objects in X .

Example:

● Let X = {a, b, c, d}.
● One possible uniform code for X is:

C(a) = 00, C(b) = 01, C(c) = 10, C(d) = 11

● Notice that for all x, LC(x) = 2 = log |X |.
● (We always write log for the logarithm to base 2.
● More generally, we always need log n bits to encode an

element in a set with n elements if we use a uniform code.
● Of course, many other (not necessarily uniform-length) codes

are possible as well.
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Prefix code: A prefix code is a code such that no codeword is a
prefix of any other codeword.

Examples:

● Let X = {a, b, c}.
● Prefix code: C(a) = 0, C(b) = 10, C(c) = 11
● Not a prefix code: C(a) = 0, C(b) = 01, C(c) = 1

(because C(a) is a prefix of C(b))

Always use prefix codes:

● Concatenation of two arbitrary codes may not be a code,
unless we use comma’s to separate codewords:
For example, 0101 may mean acb, bac, bb, acac in non-prefix code above.

● Concatenation of two prefix codes is again a prefix code.
● If we want to concatenate codes, then we can restrict to prefix

codes without loss of generality.
● All description lengths in MDL are based on prefix codes.
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Difficulty: The positive integers 1, 2, . . . form an infinite set, so
we cannot use a uniform code to encode them. So how to code
them?

Inefficient solution:

● C(x) = ‘x 1s followed by a 0’
● L(x) = x + 1.
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Difficulty: The positive integers 1, 2, . . . form an infinite set, so
we cannot use a uniform code to encode them. So how to code
them?

Inefficient solution:

● C(x) = ‘x 1s followed by a 0’
● L(x) = x + 1.

Efficient solution:

● ⌈a⌉ denotes rounding up a to the nearest integer.
● First encode ⌈log x⌉ using the inefficient code.
● This encodes that x is an element of

A = {2⌈log x⌉−1 + 1, . . . , 2⌈log(x)⌉},
which has 2⌈log x⌉−1 elements.

● We then use a uniform code for A and get:
● L(x) = ⌈log x⌉ + 1 + log 2⌈log x⌉−1 ≈ 2 log x.
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Polynomials:

Making two-part MDL precise for regression with polynomials is
quite complicated:

● The parameters of a polynomial are real numbers.
● There are more real numbers than finite binary strings, so we

cannot encode them all.
● The solution is to encode the parameters up to a finite

precision.
● The precision is chosen to minimize the total description

length of the data.

Grammar Learning:

● We will now make two-part MDL precise for grammar
learning, for which there are no such complications.
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Idea: A context-free grammar is a set of formal rewriting rules,
which naturally captures recursive patterns, like in the grammar
of English.

Definition: A context-free grammar (CFG) constists of a tuple

(S,N , T ,R).

● Terminals: T is a finite set of terminal symbols that stop the
recursion. (In our examples these will be English words, like ‘cat’, ‘the’,

‘says’, etc.)

● Nonterminals: N is a finite set of nonterminal symbols,
which includes the special starting symbol S. (In our examples

these will be parts of English grammar, like ‘N’ (noun), ‘S’ (sentence), etc.)

● Rules: R is a set of rewriting rules of the form A → B, where
A is a nonterminal and B consists of one or more terminals or
nonterminals or nothing (denoted by ǫ). (At least one rule must

start with S on the left.)
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Abbreviations: The following abbreviations are common: S =
sentence, NP = noun phrase, VP = verb phrase, ART = article, N
= noun.

A context-free grammar:

● T = {a, the, man, cat, says, that, bites}
● N = {S, NP, VP, ART, N}

● Rules:
S → NP VP NP → ART N VP → bites NP
ART → the VP → bites VP → says that S
ART → a N → man N → cat

This grammar can for example generate the sentence “The cat
says that a man bites”:

S ( Starting symbol)
S→ NP VP (S→ NP VP)
NP VP→ ART N VP (NP→ ART N)
ART N VP→ the N VP (ART→ the)
the N VP→ the cat VP (N→ cat)
the cat VP→ the cat says that S (VP→ says that S)
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Abbreviations: The following abbreviations are common: S =
sentence, NP = noun phrase, VP = verb phrase, ART = article, N
= noun.

A context-free grammar:

● T = {a, the, man, cat, says, that, bites}
● N = {S, NP, VP, ART, N}

● Rules:
S → NP VP NP → ART N VP → bites NP
ART → the VP → bites VP → says that S
ART → a N → man N → cat

This grammar can for example generate the sentence “The cat
says that a man bites”:

the cat VP→ the cat says that S (VP→ says that S)
the cat says that S→ the cat says that NP VP (S→ NP VP)
the cat says that NP VP→ the cat says that ART N VP (NP→ ART N)
the cat says that ART N VP→ the cat says that a N VP (ART→ a)
the cat says that a N VP→ the cat says that a man VP (N→ man)
the cat says that a man VP→ the cat says that a man bites (VP→ bites)
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Problem specification:

● We get a text with n words: D = t1, . . ., tn,
where each word ti ∈ T is considered a terminal.

● Context-free grammars can be defined not just to generate
single sentences, but also to generate entire texts.

● We try to learn the best context-free grammar for this text
using the MDL principle.

Applying Two-Part MDL:

● Find the CFG grammar H minimizing L(H) + L(D | H).
● To formalise this, we need to design:

✦ L(H): a code for encoding CFGs H and
✦ L(D | H): for each H a code for encoding data ‘with the

help of H ’ (making use of the properties of the data that are

prescribed by H).



L(H): Encoding Grammars

Two-Part MDL

Two-Part MDL for
Grammar Learning

Two-Part MDL for
Probabilistic
Hypotheses

The Big Picture of
MDL

12 / 25

Not optimal, but reasonable:

● Here are some intuitive, reasonable codes that one could use.
No claim that these are the ‘best’, but they are relatively easy
to explain.

● Much of modern MDL theory deals with designing ‘good’
codes.

Encoding H = (S,N , T ,R):

● Code for T : Will turn out to be irrelevant, so just pick any
code CT .

● Codes CN and CR for the nonterminals and rules will be
specified on the next slide.
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Encoding the nonterminals ( CN ):

● Instead of the standard abbreviations, we use the positive
integers 1, . . ., |N |. This does not change which texts can be
generated by the grammar. E.g. 1=S, 2=NP, etc.

● To encode the set N we now only need to encode |N |. Using
the efficient code for the integers: LCN

(N ) = 2 log |N |.

Encoding the rules ( CR):

● First encode the number of rules: 2 log |R| bits.
● Then encode all nonterminals on the left-hand-side of a rule

using the uniform code on N : |R| · log |N | bits.
● Then (non)terminals on right-hand-side (RHS) of rules:

|R|∑

i=1

2 log Ri + Ri log(|T ∪ N |) bits,

where Ri is the nr. of elements on the RHS of the ith rule.



L(D | H): Encoding Data Given H

Two-Part MDL

Two-Part MDL for
Grammar Learning

Two-Part MDL for
Probabilistic
Hypotheses

The Big Picture of
MDL

14 / 25

H specifies grammatically correct texts:

● To encode data D = t1, . . ., tn literally, we need
n log |T | = log |T |n bits, since there are |T |n possible texts of
length n.

● But grammars H impose constraints on the set of texts that
are allowed. For example, in English, articles cannot be
followed by verbs, nouns cannot be followed by articles etc.

● Because of these constraints, the number of grammatically
correct texts will be exponentially smaller than |T |n.

Using H to compress the data:

● First encode n: 2 log n bits.
● Then encode D using a uniform code on all grammatically

correct texts of length n, where grammatically correct means
that the text can be generated by grammar H.

● This takes log(nr. of correct texts of length n) bits.
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We will use MDL to choose between three grammars. Does it find
the right one?

● Promiscuous grammar:
This grammar accepts any text of any length: For all t ∈ T , it
contains a rule S → t S, and an additional rule S → ǫ (the
empty string). (Solomonoff, 1964)
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● Promiscuous grammar: Terrible underfitting!

This grammar accepts any text of any length: For all t ∈ T , it
contains a rule S → t S, and an additional rule S → ǫ (the
empty string). (Solomonoff, 1964)
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We will use MDL to choose between three grammars. Does it find
the right one?

● Promiscuous grammar: Terrible underfitting!

This grammar accepts any text of any length: For all t ∈ T , it
contains a rule S → t S, and an additional rule S → ǫ (the
empty string). (Solomonoff, 1964)

● Ad hoc grammar:
The grammar that accepts only the training text D, and
nothing else: Only contains the rule
S → t1, . . ., tn.
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the right one?

● Promiscuous grammar: Terrible underfitting!

This grammar accepts any text of any length: For all t ∈ T , it
contains a rule S → t S, and an additional rule S → ǫ (the
empty string). (Solomonoff, 1964)

● Ad hoc grammar: Terrible overfitting!

The grammar that accepts only the training text D, and
nothing else: Only contains the rule
S → t1, . . ., tn.
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We will use MDL to choose between three grammars. Does it find
the right one?

● Promiscuous grammar: Terrible underfitting!

This grammar accepts any text of any length: For all t ∈ T , it
contains a rule S → t S, and an additional rule S → ǫ (the
empty string). (Solomonoff, 1964)

● Ad hoc grammar: Terrible overfitting!

The grammar that accepts only the training text D, and
nothing else: Only contains the rule
S → t1, . . ., tn.

● The ‘right’ grammar: A good CFG approximation of the real
English grammar. (Of course, no perfect CFG for English
grammar is possible, but we can get close.) Note that the size
of this grammar does not depend on the length n of the text.
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MDL selects the right grammar: Given enough data (large
enough n), the total description length L(H) + L(D | H) will be
much smaller for the ‘right’ grammar than for either the ad hoc or
for the promiscuous grammar.

Explanation:

● Promiscuous grammar: Every text is allowed, so
L(D | H) ≥ n log |T |. Hence L(H)+L(D | H) is longer than a
literal description of the data. We haven’t compressed at all!

● Ad hoc grammar: Note that R1 = n, so
L(H) ≥ LCR

(R) ≥ R1 log |T ∪ T | ≥ n log |T |. Again we
haven’t compressed at all!

● The ‘right’ grammar: The size of the right grammar doesn’t
depend on n, so L(H) is some constant. And L(D | H) grows
much slower than n log |T |, because the number of
grammatically correct texts is exponentially smaller than the
number of possible texts.
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MDL avoided overfitting:

● The promiscuous grammar was rejected because it did not
help in compressing the data (L(D | h) was too big).

● Even though the ad hoc grammar fit the data very well
(L(D | H) was very small), it was rejected because the
grammar itself was much too complex (L(H) was too big).

● MDL selected the ‘right’ grammar, which struck the right
balance between complexity and goodness of fit.

The limits of this example:

● The example does not show what MDL will do if we use it to
select a grammar from all possible CFG grammars.

● However, it does show that MDL strongly prefers the right
grammar over the silly promiscuous and ad hoc grammars.

● This illustrates how compressing the data protects against
overfitting.
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Noise causes complications:

● If the data has noise, then the approach for grammars that we
just sketched will fail.

● Reason: Noise causes grammatically incorrect texts.
● And grammatically incorrect texts cannot be encoded using

the ‘right’ grammar.

Probabilistic hypotheses are better:

● To counter this, it is better to work with probabilistic
hypotheses that take the noise into account.

● For example, we could use probabilistic grammars where
each rule ‘fires’ with a certain probability.

● (The idea roughly: high probability for grammatically correct
rules; low probability for rules that describe noise.)



Codelengths and Probabilities

Two-Part MDL

Two-Part MDL for
Grammar Learning

Two-Part MDL for
Probabilistic
Hypotheses

The Big Picture of
MDL

20 / 25

Few objects can have small codelength:

● If we store our data on a computer, then it is represented
internally as a binary sequence. Without loss of generality we
can assume that our data is already a binary sequence.

● There are 2m binary sequences of m bits and∑
a

i=0 2i = 2a+1 − 1 binary sequences of length at most a.
● By taking a = m − (k + 1) we see that the fraction of binary

sequences of length m that can be compressed by more than
k bits is less than 2m−k/2m = 1/2k, which is very small for
large k.

Few objects can have large probability: The probabilities
for all objects have to sum to 1.

This suggests an analogy: This analogy can be made
precise by Kraft’s inequality , which relates P to a code C such
that LC(x) = − log P (x).
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Deterministic hypotheses: For a hypothesis space H
containing deterministic hypotheses, two-part MDL tells us to
select the hypothesis that achieves:

min
H∈H

L(H) + L(D | H)

Probabilistic hypotheses:

● Let M be a model, which contains probabilistic hypotheses.
● Using Kraft’s inequality, two-part MDL tells us to select the

probabilistic hypothesis achieving:

min
P∈M

L(P ) − log P (D)
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Deterministic hypotheses: For a hypothesis space H
containing deterministic hypotheses, two-part MDL tells us to
select the hypothesis that achieves:

min
H∈H

L(H) + L(D | H)

Probabilistic hypotheses:

● Let M be a model, which contains probabilistic hypotheses.
● Using Kraft’s inequality, two-part MDL tells us to select the

probabilistic hypothesis achieving:

min
P∈M

L(P ) − log P (D)

Penalised maximum likelihood: Minimizing − log P (D) is
equivalent to maximizing P (D), so MDL can be viewed as a form
of penalised maximum likelihood. The penalty of each
probabilistic hypothesis P depends on its complexity L(P ).
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Two-part MDL amounts to a form of Bayesian MAP with a
particular choice of prior.1

How Bayes avoid overfitting:

● If you use a large model, then almost every probabilistic
hypothesis in the model has to get small prior probability.

● Reason: prior probabilities have to sum up to one.

This is similar to:
How MDL avoids overfitting:

● If you use a large model, then almost every (probabilistic)
hypothesis H in the model has to get a large codelength
L(H).

● Reason: There exist only two codewords of length 1, only four
of length 2, etc.

1For very large (uncountably infinite) models, there are some technical details
about coding the hypotheses only to finite precision.
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MDL is more than two-part codes:

● We have seen two-part codes: Code the data using the
hypothesis that minimizes L(H) + L(D | H).2

● They are (the oldest) special case of universal codes .
● More generally, MDL may be based on universal codes.

Universal codes:

● A universal code C for a model M is a code such that:

✦ If there exists a hypothesis P ∈ M that can be used (by
Kraft’s inequality) to compress the data well,

✦ Then C also compresses the data (almost as) well.

● Sometimes other universal codes are better than two-part
codes.

2Mitchell also has a section on two-part code MDL, which you do not have to
study.



References

Two-Part MDL

Two-Part MDL for
Grammar Learning

Two-Part MDL for
Probabilistic
Hypotheses

The Big Picture of
MDL

25 / 25

● P. Grünwald, “The Minimum Description Length Principle”,
2007

● T.M. Cover and J.A. Thomas, “Elements of Information
Theory,” 1991


	Two-Part MDL
	Overview
	Two-Part Code MDL (Rissanen '78)
	Codes and Codelengths
	Example 1: Uniform Code
	Prefix Codes
	Prefix Code for the Integers

	Two-Part MDL for Grammar Learning
	Overview
	Making Two-Part MDL Precise
	Context-Free Grammars
	CFG Example
	Two-Part MDL for Grammar Learning
	L(H): Encoding Grammars
	L(H): Encoding Grammars
	L(D H): Encoding Data Given H
	Learning the Best Grammar
	What MDL Does
	Discussion of the Grammar Learning Example

	Two-Part MDL for Probabilistic Hypotheses
	Overview
	Probabilistic Hypotheses Are Better
	Codelengths and Probabilities
	Two-Part MDL for Probabilistic Hypotheses

	The Big Picture of MDL
	Overview
	Relation to Bayes
	Modern MDL
	References


