Machine Learning 2007: Lecture 2

Instructor: Tim van Erven (Tim.van.Erven@cwi.nl)
Website: www.cwi.nl/~erven/teaching/0708/ml/
September 13, 2007

Overview

Organisational

 MattersThis Lecture versus Mitchell
Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

- Organisational Matters
- This Lecture versus Mitchell
- Vectors and Matrices
- Scalars, Vectors and Matrices
- Addition
- Multiplication by a Scalar
- The Transpose
- Multiplying Vectors or Matrices
- The Identity Matrix
- The Matrix Inverse
- Data Representation Using Vectors

Organisational Matters

Organisational

 MattersThis Lecture versus Mitchell

Scalars, Vectors and Matrices
Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

- Please register on Blackboard:

Machine Learning (2007-2008)_1

- Final exam: December 20, 18.30-21.15
- Homework Exercises 1 moved to this week. I will make an alternative version available for students who have not seen vectors and matrices before.

Overview

Organisational Matters

This Lecture versus

 MitchellScalars, Vectors and Matrices
Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

- Organisational Matters
- This Lecture versus Mitchell
- Vectors and Matrices
- Scalars, Vectors and Matrices
- Addition
- Multiplication by a Scalar
- The Transpose
- Multiplying Vectors or Matrices
- The Identity Matrix
- The Matrix Inverse
- Data Representation Using Vectors

This Lecture versus Mitchell

Organisational

 MattersThis Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Mitchell

- Still Chapter 1 and Chapter 2 up to section 2.2. (Be patient, we will go faster soon enough.)

This Lecture

- Vectors and matrices are not in Mitchell.
- There is no explicit discussion on data representation in Mitchell.

Overview

Organisational

Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition
Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

- Organisational Matters
- This Lecture versus Mitchell
- Vectors and Matrices
- Scalars, Vectors and Matrices
- Addition
- Multiplication by a Scalar
- The Transpose
- Multiplying Vectors or Matrices
- The Identity Matrix
- The Matrix Inverse
- Data Representation Using Vectors

Scalars and Vectors

Organisational

Matters
This Lecture versus Mitchell

Scalars, Vectors and

 MatricesAddition
Multiplication by a Scalar
The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Scalars:

A scalar α is just an ordinary number (element of \mathbb{R}).

- For example: $x=10$.

Vectors:

An n-dimensional vector $\mathrm{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ is a list of n numbers.

- For example, $\mathbf{x}=\left(\begin{array}{c}3 \\ -4 / 7 \\ \pi \\ 10\end{array}\right)$.
- Note the convention of writing the list vertically.

The Vector Space \mathbb{R}^{n}

Organisational
Matters
This Lecture versus Mitchell

Scalars, Vectors and

 MatricesAddition
Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

The set of all n-dimensional vectors is defined as:

$$
\mathbb{R}^{n}=\left\{\left.\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \right\rvert\, x_{1} \in \mathbb{R}, \ldots, x_{n} \in \mathbb{R}\right\}
$$

- Such spaces are called vector spaces.
- Geometrically, $\mathbb{R}^{1}=\mathbb{R}$ is a line.
- \mathbb{R}^{2} is a plane.
- \mathbb{R}^{3} is the 3 -dimensional space.
- \mathbb{R}^{n} is the n-dimensional space.

Matrices

Organisational

This Lecture versus Mitchell

Scalars, Vectors and

Matrices
Addition
Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Definition:

An $m \times n$ matrix A with elements $a_{i j}$ is an array of numbers:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

- In $a_{i j}$: i indicates the row and j indicates the column.
- An $m \times 1$ matrix is an m-dimensional vector.

Example:

$$
A=\left(\begin{array}{cccc}
10 & -3 & 1 & 7 \\
\pi & 6 & -1 / 9 & 2 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

Overview

Organisational
Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

- Organisational Matters
- This Lecture versus Mitchell
- Vectors and Matrices
- Scalars, Vectors and Matrices
- Addition
- Multiplication by a Scalar
- The Transpose
- Multiplying Vectors or Matrices
- The Identity Matrix
- The Matrix Inverse
- Data Representation Using Vectors

Adding Vectors

Organisational

Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Definition:

For any two vectors $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{n}$

$$
\mathbf{x}+\mathbf{y}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+y_{1} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right)
$$

- You can not add vectors of different dimensionality.

Example:

$$
\mathbf{x}+\mathbf{y}=\left(\begin{array}{c}
3 \\
10 \\
-4 / 7 \\
\pi \\
0
\end{array}\right)+\left(\begin{array}{c}
6 \\
-5 \\
4 \\
-3 \\
2
\end{array}\right)=\left(\begin{array}{c}
9 \\
5 \\
24 / 7 \\
\pi-3 \\
2
\end{array}\right)
$$

Adding Matrices

Organisational

Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Definition:

For any two $m \times n$ matrices A and B,

$$
\begin{aligned}
A+B= & \left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)+\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 n} \\
\vdots & \ddots & \vdots \\
b_{m 1} & \cdots & b_{m n}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
a_{11}+b_{11} & \cdots & a_{1 n}+b_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & \cdots & a_{m n}+b_{m n}
\end{array}\right)
\end{aligned}
$$

- You can not add matrices of different dimensionality.

Adding Matrices

Organisational
Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Example:

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right)+\left(\begin{array}{ccc}
-1 & 1 & -1 \\
1 & \pi & 1 \\
-1 & 1 & -1 \\
0 & 6 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 3 & 2 \\
5 & 5+\pi & 7 \\
6 & 9 & 8 \\
10 & 17 & 12
\end{array}\right)
$$

But this is not defined:

$$
\left(\begin{array}{lll}
1 & 1 & 2 \\
3 & 5 & 8
\end{array}\right)+\left(\begin{array}{cc}
13 & 21 \\
34 & 55 \\
89 & 144
\end{array}\right)=?
$$

Overview

Organisational
Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

- Organisational Matters
- This Lecture versus Mitchell
- Vectors and Matrices
- Scalars, Vectors and Matrices
- Addition
- Multiplication by a Scalar
- The Transpose
- Multiplying Vectors or Matrices
- The Identity Matrix
- The Matrix Inverse
- Data Representation Using Vectors

Multiplying a Vector by a Scalar

Organisational

Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition
Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Definition:

For any vector $\mathrm{x} \in \mathbb{R}^{n}$ and scalar $\alpha \in \mathbb{R}$

$$
\alpha \mathbf{x}=\alpha\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
\alpha x_{1} \\
\vdots \\
\alpha x_{n}
\end{array}\right)
$$

Example:

$$
2 \mathbf{x}=2\left(\begin{array}{c}
3 \\
10 \\
-4 / 7 \\
\pi \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
6 \\
20 \\
-8 / 7 \\
2 \pi \\
0 \\
-2
\end{array}\right)
$$

Multiplying a Matrix by a Scalar

Organisational

Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition
Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Definition:

For any $m \times n$ matrix A and scalar $\alpha \in \mathbb{R}$

$$
\alpha A=\alpha\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha a_{11} & \cdots & \alpha a_{1 n} \\
\vdots & \ddots & \vdots \\
\alpha a_{m 1} & \cdots & \alpha a_{m n}
\end{array}\right) .
$$

Example:

$$
-2\left(\begin{array}{ccc}
3 & -1 & -9 \\
-4 & 5 & 4
\end{array}\right)=\left(\begin{array}{ccc}
-6 & 2 & 18 \\
8 & -10 & -8
\end{array}\right)
$$

Overview

Organisational

Matters
This Lecture versus Mitchell
Scalars, Vectors and Matrices
Addition

Multiplication by a Scalar
The Transpose

Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

- Organisational Matters
- This Lecture versus Mitchell
- Vectors and Matrices
- Scalars, Vectors and Matrices
- Addition
- Multiplication by a Scalar
- The Transpose
- Multiplying Vectors or Matrices
- The Identity Matrix
- The Matrix Inverse
- Data Representation Using Vectors

The Matrix and Vector Transpose

Organisational

This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose

Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Matrix Transpose:

If A is an $m \times n$ matrix with elements $a_{i j}$, then its transpose A^{\top} is an $n \times m$ matrix with elements $b_{i j}$ such that $b_{i j}=a_{j i}$.

Example:

$$
\left(\begin{array}{ccc}
1 & -8 & 2 \\
3 & 5 & 1
\end{array}\right)^{\top}=\left(\begin{array}{cc}
1 & 3 \\
-8 & 5 \\
2 & 1
\end{array}\right)
$$

Vector Transpose:

An m-dimensional vector is a $m \times 1$ matrix. Therefore the vector transpose is a special case of the matrix transpose. For example,

$$
\left(\begin{array}{c}
9 \\
-3 \\
-1
\end{array}\right)^{\top}=\left(\begin{array}{lll}
9 & -3 & -1
\end{array}\right) \quad\left(\begin{array}{lll}
9 & -3 & -1
\end{array}\right)^{\top}=\left(\begin{array}{c}
9 \\
-3 \\
-1
\end{array}\right)
$$

Overview

Organisational

Matters

This Lecture versus Mitchell

Scalars, Vectors and Matrices
Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

- Organisational Matters
- This Lecture versus Mitchell
- Vectors and Matrices
- Scalars, Vectors and Matrices
- Addition
- Multiplication by a Scalar
- The Transpose
- Multiplying Vectors or Matrices
- The Identity Matrix
- The Matrix Inverse
- Data Representation Using Vectors

Multiplying Vectors

Organisational

Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Definition:

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are n-dimensional vectors, then their inner product, denoted $\langle\mathbf{x}, \mathrm{y}\rangle$, is defined as

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i} y_{i}=x_{1} y_{1}+\ldots+x_{n} y_{n}
$$

Example:

$$
\left\langle\left(\begin{array}{l}
9 \\
5 \\
1
\end{array}\right),\left(\begin{array}{c}
-3 \\
2 \\
11
\end{array}\right)\right\rangle=9 \cdot-3+5 \cdot 2+1 \cdot 11=-6
$$

Multiplying Matrices

Organisational
 Matters

This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse Data Representation Using Vectors

Some Notation:

We may view a matrix as a collection of vectors:

$$
A=\left(\begin{array}{ccc}
- & \mathbf{a}_{1}^{\top} & - \\
\vdots & \\
- & \mathbf{a}_{m}^{\top} & -
\end{array}\right) \quad B=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathbf{b}_{1} & \cdots & \mathbf{b}_{n} \\
\mid & & \mid
\end{array}\right)
$$

Matrix Product:

If A is an $m \times k$ matrix and B is a $k \times n$ matrix, then their product $A B$ is the $m \times n$ matrix with elements $c_{i j}$ such that

$$
c_{i j}=\left\langle\mathbf{a}_{i}, \mathbf{b}_{j}\right\rangle
$$

- Note that $\left\langle\mathbf{a}_{i}, \mathbf{b}_{j}\right\rangle=\sum_{l=1}^{k} a_{i l} b_{l j}$.

Multiplying Matrices

Organisational

Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Example:

$$
\left.\left.\left(\begin{array}{cc}
3 & -1 \\
-4 & 5 \\
4 & -9
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right)=\left(\begin{array}{cc}
\left\langle\binom{ 3}{-1},\binom{1}{3}\right\rangle & \left\langle\binom{ 3}{-1},\binom{2}{0}\right\rangle \\
\left\langle\binom{ 5}{5},\binom{1}{3}\right\rangle & \langle(-4 \\
5
\end{array}\right),\binom{2}{0}\right\rangle\right)
$$

$$
=\left(\begin{array}{cc}
3-3 & 6-0 \\
-4+15 & -8+0 \\
4-27 & 8-0
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
0 & 6 \\
11 & -8 \\
-23 & 8
\end{array}\right)
$$

Multiplying a Matrix and a Vector

Organisational

Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices
Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

A Special Case of Matrix Multiplication:

- Recall that a k-dimensional vector is a $k \times 1$ matrix.
- Hence if A is an $m \times k$ matrix and \mathbf{x} is a k-dimensional vector, then the product $A \mathbf{x}$ is an $m \times 1$ matrix, which is a m-dimensional vector.

Example:

$$
\begin{aligned}
& \left.\left.\left(\begin{array}{cc}
3 & -1 \\
-4 & 5 \\
4 & -9
\end{array}\right)\binom{1}{3}=\left(\begin{array}{c}
\left\langle\binom{ 3}{-1},\binom{1}{3}\right\rangle \\
\left\langle\binom{ 4}{5},\binom{1}{3}\right\rangle \\
\langle \\
-9
\end{array}\right),\binom{1}{3}\right\rangle\right) \\
& =\left(\begin{array}{c}
3-3 \\
-4+15 \\
4-27
\end{array}\right)=\left(\begin{array}{c}
0 \\
11 \\
-23
\end{array}\right)
\end{aligned}
$$

Overview

Organisational
Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices
Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

- Organisational Matters
- This Lecture versus Mitchell
- Vectors and Matrices
- Scalars, Vectors and Matrices
- Addition
- Multiplication by a Scalar
- The Transpose
- Multiplying Vectors or Matrices
- The Identity Matrix
- The Matrix Inverse
- Data Representation Using Vectors

The Identity Matrix

Organisational
Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

The Identity Matrix:

- The $n \times n$ identity matrix I satisfies $I \mathrm{x}=\mathbf{x}$ for all vectors \mathbf{x}.
- It has 1 s on the diagonal and 0s everywhere else.

Example:

$$
I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Overview

Organisational
 Matters

This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix

The Matrix Inverse

Data Representation Using Vectors

- Organisational Matters
- This Lecture versus Mitchell
- Vectors and Matrices
- Scalars, Vectors and Matrices
- Addition
- Multiplication by a Scalar
- The Transpose
- Multiplying Vectors or Matrices
- The Identity Matrix
- The Matrix Inverse
- Data Representation Using Vectors

Matrix Inverse

Organisational

Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices
Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Definition:

Suppose A is an $n \times n$ matrix. Then the matrix inverse A^{-1} (if it exists) is the $n \times n$ matrix such that

$$
A^{-1} A=I \quad \text { and } \quad A A^{-1}=I .
$$

Example:

$$
A=\left(\begin{array}{ccc}
2 & 3 & 1 \\
2 & 6 & 1 \\
-2 & 3 & 0
\end{array}\right) \quad A^{-1}=\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & -1 / 2 \\
-1 / 3 & 1 / 3 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

Overview

Organisational

Matters

This Lecture versus Mitchell

Scalars, Vectors and Matrices
Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

- Organisational Matters
- This Lecture versus Mitchell
- Vectors and Matrices
- Scalars, Vectors and Matrices
- Addition
- Multiplication by a Scalar
- The Transpose
- Multiplying Vectors or Matrices
- The Identity Matrix
- The Matrix Inverse
- Data Representation Using Vectors

Classifying Genes by Gene Expression

Organisational
Matters
This Lecture versus Mitchell Scalars, Vectors and Matrices Addition Multiplication by a Scalar The Transpose Multiplying Vectors or Matrices The Identity Matrix The Matrix Inverse Data Representation Using Vectors

Handwritten Digits

Organisational Matters

This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition
Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Consider the problem of classifying handwritten digits again [LeCun et al., 1998]. How can we represent such digits as vectors?

Handwritten Digits

Organisational Matters

This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition
Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Consider the problem of classifying handwritten digits again [LeCun et al., 1998]. How can we represent such digits as vectors? Concatenate rows.
 00000000001111111111

Checkers Board Features

Organisational

This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition
Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Don't represent the entire board, but only aspects of it (Mitchell):

Feature	Meaning
x_{1}	the number of black pieces on the board
x_{2}	the number of red pieces on the board
x_{3}	the number of black kings on the board
x_{4}	the number of red kings on the board
x_{5}	the number of black pieces threatened by red
x_{6}	the number of red pieces threatened by black

EnjoySport 1

Organisational

Matters
This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

One Way to Do It:

Attribute	Sky			AirTemp	
Value	Sunny	Cloudy	Rainy	Warm	Cold
Encoding	1	2	3	1	2

Sunny, Warm $\Longrightarrow \mathrm{x}=\binom{1}{1}$
Rainy, Cold $\Longrightarrow \mathrm{x}=\binom{3}{2}$
Sunny, Cold $\Longrightarrow x=\binom{1}{2}$

- The difference of for example $\binom{3}{2}-\binom{1}{1}=\binom{2}{1}$ has no meaning.

EnjoySport 2

This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation Using Vectors

Another Way to Do It:

Attribute	Sky			AirTemp	
Value	Sunny	Cloudy	Rainy	Warm	
Encoding	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$	$\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$	$\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$	$\binom{1}{0}$	

$$
\text { Sunny, Warm } \Longrightarrow \mathbf{x}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right) \quad \text { Rainy, Cold } \Longrightarrow \mathbf{x}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
1
\end{array}\right)
$$

- The number of non-zero entries in the difference between two vectors is twice the number of attributes that differ.

References

Organisational

This Lecture versus Mitchell

Scalars, Vectors and Matrices

Addition

Multiplication by a Scalar

The Transpose
Multiplying Vectors or Matrices

The Identity Matrix
The Matrix Inverse
Data Representation
Using Vectors

- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-Based Learning Applied to Document Recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
- C. Geijsel, and W. Hoffmann, "Lineaire Algebra voor Informatiewetenschappen," Universiteit van Amsterdam, Dec. 2000

