Machine Learning 2007: Lecture 3

Instructor: Tim van Erven (Tim.van.Erven@cwi.nl) Website: www.cwi.nl/~erven/teaching/0708/ml/ September 20, 2007

Overview

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Organisational Matters

- Hypothesis Spaces
- Method: Least Squares Linear Regression
- Being Informal about Feature Vectors
- Method: LIST-THEN-ELIMINATE for Concept Learning
 - A Biased Hypothesis Space
 - An Unbiased Hypothesis Space?

Organisational Matters

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Course Organisation:

- Intermediate exam: October 25, 11.00 13.00 in 04A05.
- Biweekly exercises

This Lecture versus Mitchell

- All of it is in the book (Chapters 1 and 2), except for "Being Informal About Feature Vectors".
- The presentation is different though: We recognise methods from Mitchell as methods to deal with regression and classification.

Overview

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Organisational Matters

Hypothesis Spaces

- Method: Least Squares Linear Regression
- Being Informal about Feature Vectors
- Method: LIST-THEN-ELIMINATE for Concept Learning
 - A Biased Hypothesis Space
 - An Unbiased Hypothesis Space?

Reminder of Machine Learning Categories

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space? **Prediction:** Given data $D = y_1, \ldots, y_n$, predict how the sequence continues with y_{n+1} .

Regression: Given data $D = \begin{pmatrix} y_1 \\ x_1 \end{pmatrix}, \dots, \begin{pmatrix} y_n \\ x_n \end{pmatrix}$, learn to predict the value of the label y for any new feature vector \mathbf{x} . Typically y can take infinitely many values. Acceptable if your prediction is close to the correct y.

Classification: Given data $D = \begin{pmatrix} y_1 \\ \mathbf{x}_1 \end{pmatrix}, \dots, \begin{pmatrix} y_n \\ \mathbf{x}_n \end{pmatrix}$, learn to predict the class label y for any new feature vector \mathbf{x} . Only finitely many categories. Your prediction is either correct or wrong.

Hypotheses and Hypothesis Spaces

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Definition of a Hypothesis:

A hypothesis h is a candidate description of the regularity or patterns in your data.

Prediction example: $y_{n+1} = h(y_1, \dots, y_n) = y_{n-1} + y_n$ Regression example: $y = h(\mathbf{x}) = 5x_1$

Classification example: $y = h(\mathbf{x}) = \begin{cases} +1 & \text{if } 3x_1 - 20 > 0; \\ -1 & \text{otherwise.} \end{cases}$

Definition of a Hypothesis Space:

A hypothesis space \mathcal{H} is the set $\{h\}$ of hypotheses that are being considered.

• Regression example: $\{h_a(\mathbf{x}) = a \cdot x_1 | a \in \mathbb{R}\}$

Overview

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space? Organisational Matters

- Hypothesis Spaces
 - Method: Least Squares Linear Regression
 - Being Informal about Feature Vectors
 - Method: LIST-THEN-ELIMINATE for Concept Learning
 - A Biased Hypothesis Space
 - An Unbiased Hypothesis Space?

Linear Regression

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

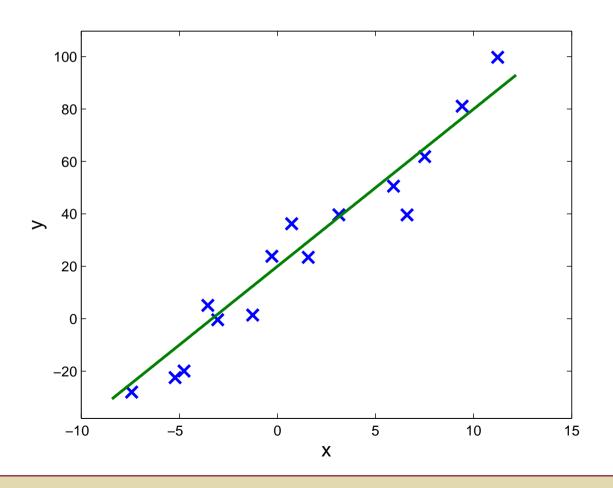
LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Linear Regression:

In linear regression the goal is to select a linear hypothesis that best captures the regularity in the data.



Hypothesis Space of Linear Hypotheses

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Linear Function:

$$y = h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + \ldots + w_d x_d$$

x = (x₁,...,x_d)[⊤] is a *d*-dimensional feature vector. **w** = (w₀, w₁, ..., w_d)[⊤] are called the **weights**.

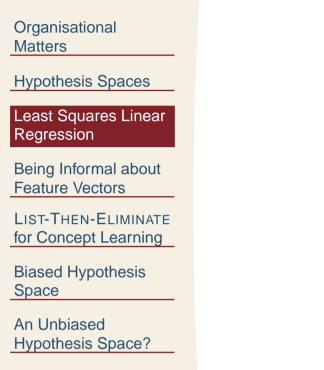
Examples:

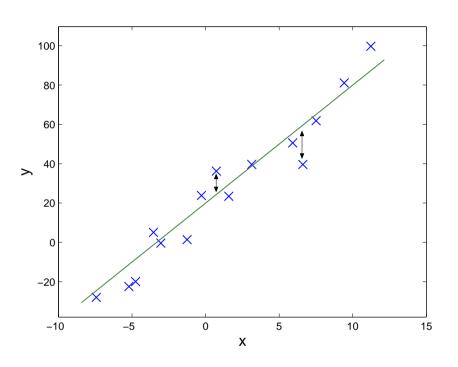
$$h_{\mathbf{w}}(\mathbf{x}) = 2 + 9x_1$$
 $(w_0 = 2, w_1 = 9)$
 $h_{\mathbf{w}}(\mathbf{x}) = 3 + 16x_1 - 2x_3$ $(w_0 = 3, w_1 = 16, w_2 = 0, w_3 = -2)$

Hypothesis Space of All Linear Hypotheses:

$$\mathcal{H} = \{h_{\mathbf{w}} \mid \mathbf{w} \in \mathbb{R}^{d+1}\}$$

Example: A Linear Function with Noise





Data generated by a linear function

 $y = 6x + 20 + \epsilon,$

where ϵ is noise with distribution $\mathcal{N}(0, 10)$. Can we recover this function from the data alone?

Determining Weights from the Data

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Squared Error:

For given w, we may evaluate the squared error of h_w on a single data-item $\begin{pmatrix} y_i \\ \mathbf{x}_i \end{pmatrix}$:

Squared Error = $(y_i - h_{\mathbf{w}}(\mathbf{x}_i))^2$

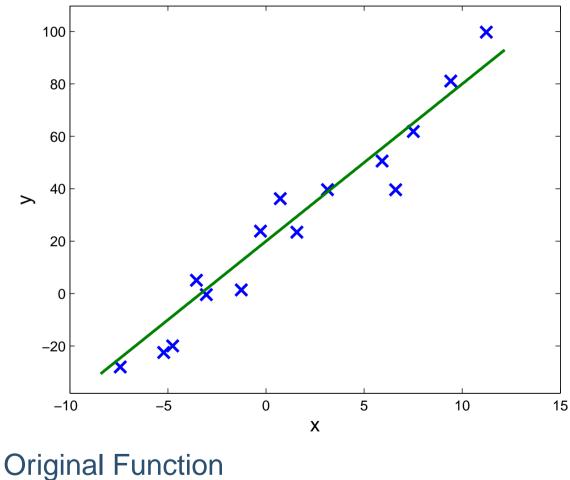
Least Squares Linear Regression:

Given data $D = \begin{pmatrix} y_1 \\ \mathbf{x}_1 \end{pmatrix}, \dots, \begin{pmatrix} y_n \\ \mathbf{x}_n \end{pmatrix}$, select w to minimize the sum of squared errors SSE(D) on all data:

$$\min_{\mathbf{w}} \mathsf{SSE}(D) = \min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - h_{\mathbf{w}}(\mathbf{x}_i))^2.$$

Linear Regression Example

The previous example again:



Original Function $y = 6x + 20 + \epsilon$

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

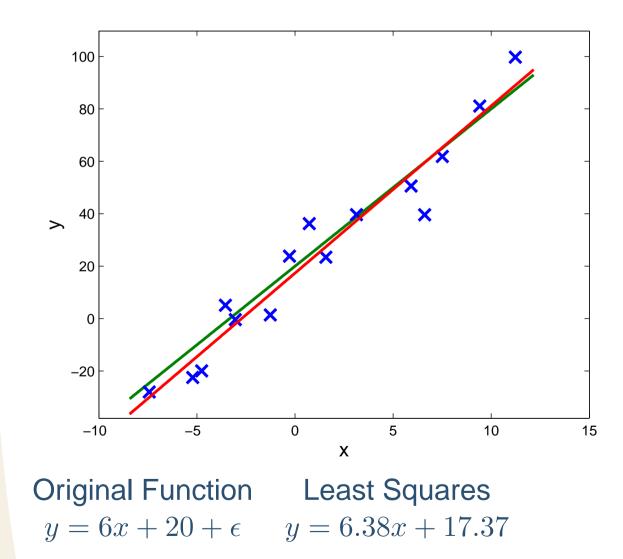
LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Linear Regression Example

The previous example again:



Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Inductive Bias

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Least Squares Linear Regression:

- Only looks for linear patterns in the data.
 - For example, it cannot discover $y = x_1^2$ even if it gets an infinite amount of data.
- Minimizes the sum of squared errors.
 - Why not something else, like for example the sum of absolute errors?

$$\min_{\mathbf{w}} \sum_{i=1}^{n} |y_i - h_{\mathbf{w}}(\mathbf{x}_i)|$$

Overview

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space? Organisational Matters

- Hypothesis Spaces
 - Method: Least Squares Linear Regression
 - Being Informal about Feature Vectors
 - Method: LIST-THEN-ELIMINATE for Concept Learning
 - A Biased Hypothesis Space
 - An Unbiased Hypothesis Space?

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Numbering Attribute Values:

Attribute	Sky			AirTemp		EnjoySport	
Value	Sunny	Cloudy	Rainy	Warm	Cold	No	Yes
Encoding	1	2	3	1	2	1	2

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Numbering Attribute Values:

Attribute	Sky			AirTe	emp	EnjoySport	
Value	Sunny	Cloudy	Rainy	Warm	Cold	No	Yes
Encoding	1	2	3	1	2	1	2

Example:

Sky, AirTemp	EnjoySport	Representation
Sunny, Warm	Yes	$\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, y = 2$
Rainy, Cold	No	$\mathbf{x} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, y = 1$
Sunny, Cold	Yes	$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, y = 2$

• The difference between feature vectors has no clear meaning. For example $\begin{pmatrix} 3 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Another Way to Do It:

Attribute	Sky			AirTemp		EnjoySport	
Value	Sunny	Cloudy	Rainy	Warm	Cold	No	Yes
Encoding	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	$\begin{pmatrix} 0\\1\\0 \end{pmatrix}$	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	1	2

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Another Way to Do It:

Attribute	Sky			AirTemp		EnjoySport	
Value	Sunny	Cloudy	Rainy	Warm	Cold	No	Yes
Encoding	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	$\begin{pmatrix} 0\\1\\0 \end{pmatrix}$	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	1	2

Example (table is on its side to fit vectors):

Sky, AirTemp	Sunny, Warm	Rainy, Cold	Sunny, Cold	
EnjoySport	Yes	No	Yes	
Representation	$\mathbf{x} = \begin{pmatrix} 1\\0\\0\\1\\0 \end{pmatrix}, y = 2$	$\mathbf{x} = \begin{pmatrix} 0\\0\\1\\0\\1 \end{pmatrix}, y = 1$	$\mathbf{x} = \begin{pmatrix} 1\\0\\0\\0\\1 \end{pmatrix}, y = 2$	

The number of non-zero entries in the difference between two vectors is twice the number of attributes that differ.

Being Informal about Feature Vectors

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space? (Feature) vectors \mathbf{x} and labels y contain numbers. But sometimes it will be convenient to be **informal** (mathematically imprecise):

Formal		Informal
$\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	\Leftrightarrow	$\mathbf{x} = \begin{pmatrix} Sunny \\ Warm \end{pmatrix}$
y=2	\Leftrightarrow	y = Yes

• Why?

- Reason 1: Don't care about details of representation.
- Reason 2: Emphasize meaning of features and labels.
- Don't forget what's really going on!

Overview

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space? Organisational Matters

- Hypothesis Spaces
 - Method: Least Squares Linear Regression
- Being Informal about Feature Vectors
- Method: LIST-THEN-ELIMINATE for Concept Learning
 - A Biased Hypothesis Space
 - An Unbiased Hypothesis Space?

Hypothesis Space for EnjoySport

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space? A hypothesis h is specified by a list of constraints on the attributes: Sky, AirTemp, Humidity, Wind, Water, Forecast.

 $h(\mathbf{x}) = \begin{cases} \text{yes } \text{ if } \mathbf{x} \text{ satisfies all constraints,} \\ \text{no } \text{ otherwise.} \end{cases}$

Hypothesis Space for EnjoySport

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space? A hypothesis h is specified by a list of constraints on the attributes: Sky, AirTemp, Humidity, Wind, Water, Forecast.

 $h(\mathbf{x}) = \begin{cases} \text{yes} & \text{if } \mathbf{x} \text{ satisfies all constraints,} \\ \text{no} & \text{otherwise.} \end{cases}$

List of constraints looks like: $\langle ?, Cold, High, ?, ?, ? \rangle$

Attribute	Description
?	Any value is acceptable for the attribute.
Ø	No value is acceptable.
Warm	Single required value for attribute (e.g. Warm)

Hypothesis Space for EnjoySport

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space? A hypothesis h is specified by a list of constraints on the attributes: Sky, AirTemp, Humidity, Wind, Water, Forecast.

 $h(\mathbf{x}) = \begin{cases} \text{yes} & \text{if } \mathbf{x} \text{ satisfies all constraints,} \\ \text{no} & \text{otherwise.} \end{cases}$

List of constraints looks like: $\langle ?, Cold, High, ?, ?, ? \rangle$

Attribute	Description
?	Any value is acceptable for the attribute.
Ø	No value is acceptable.
Warm	Single required value for attribute (e.g. Warm)

Hypothesis Space:

$$\mathcal{H} = \{h\} = \{\langle ?, ?, ?, ?, ?, ? \rangle, \langle \mathsf{Sunny}, ?, ?, ?, ?, ? \rangle, \\ \langle \mathsf{Warm}, ?, ?, ?, ?, ? \rangle, \dots, \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle \}$$

LIST-THEN-ELIMINATE Algorithm

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

- Given: data $D = \begin{pmatrix} y_1 \\ \mathbf{x}_1 \end{pmatrix}$, ..., $\begin{pmatrix} y_n \\ \mathbf{x}_n \end{pmatrix}$.
- A hypothesis *h* is **consistent** with example $\begin{pmatrix} y_i \\ \mathbf{x}_i \end{pmatrix}$ if it assigns the right label to \mathbf{x}_i : $h(\mathbf{x}_i) = y_i$.
- LIST-THEN-ELIMINATE finds the set, VersionSpace, of all hypotheses that are consistent with the training data.

LIST-THEN-ELIMINATE Algorithm

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

- Given: data $D = \begin{pmatrix} y_1 \\ \mathbf{x}_1 \end{pmatrix}$, ..., $\begin{pmatrix} y_n \\ \mathbf{x}_n \end{pmatrix}$.
- A hypothesis *h* is **consistent** with example $\begin{pmatrix} y_i \\ \mathbf{x}_i \end{pmatrix}$ if it assigns the right label to \mathbf{x}_i : $h(\mathbf{x}_i) = y_i$.
- LIST-THEN-ELIMINATE finds the set, VersionSpace, of all hypotheses that are consistent with the training data.

LIST-THEN-ELIMINATE Algorithm:

- 1: VersionSpace $\leftarrow \mathcal{H}$
- 2: for i = 1, ..., n do
- 3: Remove from VersionSpace any *h* such that $h(\mathbf{x}_i) \neq y_i$.
- 4: end for
- 5: return VersionSpace

LIST-THEN-ELIMINATE Example Run

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

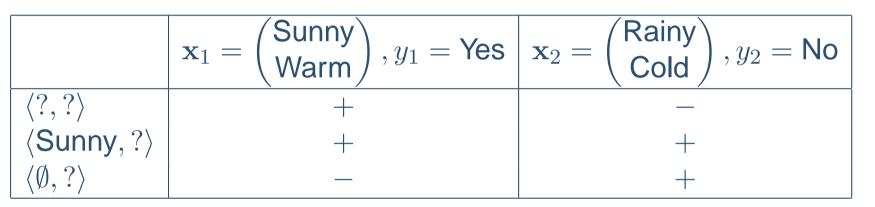
LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Simplified Hypothesis Space:

Suppose for the moment that $\mathcal{H} = \{\langle ?, ? \rangle, \langle Sunny, ? \rangle, \langle \emptyset, ? \rangle\}$. Example Run:



• + = consistent, - = inconsistent

Resulting VersionSpace:

VersionSpace = $\{\langle Sunny, ? \rangle\}$

Classifying New Instances

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

LIST-THEN-ELIMINATE:

- Given: data $D = \begin{pmatrix} y_1 \\ \mathbf{x}_1 \end{pmatrix}$, ..., $\begin{pmatrix} y_n \\ \mathbf{x}_n \end{pmatrix}$.
 - LIST-THEN-ELIMINATE finds the set, VersionSpace, of all hypotheses that are consistent with the training data.

Classifying New Instances:

Suppose we get x_{n+1} , how should we classify it?

Classifying New Instances

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

```
Biased Hypothesis
Space
```

An Unbiased Hypothesis Space?

LIST-THEN-ELIMINATE:

• Given: data
$$D = \begin{pmatrix} y_1 \\ \mathbf{x}_1 \end{pmatrix}$$
, ..., $\begin{pmatrix} y_n \\ \mathbf{x}_n \end{pmatrix}$.

LIST-THEN-ELIMINATE finds the set, VersionSpace, of all hypotheses that are consistent with the training data.

Classifying New Instances:

- Suppose we get x_{n+1} , how should we classify it?
- If all hypotheses in VersionSpace agree on the label of x_{n+1} , then it's easy; Otherwise we don't know:

 $y_{n+1} = \begin{cases} z & \text{if } h(\mathbf{x}_{n+1}) = z \text{ for all } h \in \text{VersionSpace,} \\ \text{don't know} & \text{otherwise.} \end{cases}$

Inductive Bias and Practical Issues

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Inductive Bias:

- Can only learn target concepts that are contained in the hypothesis space \mathcal{H} .
- Not robust if the target concept is not in \mathcal{H} .
- Sensitive to noise/errors in the training data: might accidentally remove the best hypothesis.
- Doesn't have any preference between consistent hypotheses.
 (Strength or weakness?)

Inductive Bias and Practical Issues

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Inductive Bias:

- Can only learn target concepts that are contained in the hypothesis space \mathcal{H} .
- Not robust if the target concept is not in \mathcal{H} .
- Sensitive to noise/errors in the training data: might accidentally remove the best hypothesis.
- Doesn't have any preference between consistent hypotheses. (Strength or weakness?)

Practical Issue:

 Uses too much memory (to store VersionSpace). The book discusses the CANDIDATE-ELIMINATION algorithm, which does the same thing using less memory.

Overview

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

- Organisational Matters
- Hypothesis Spaces
 - Method: Least Squares Linear Regression
 - Being Informal about Feature Vectors
 - Method: LIST-THEN-ELIMINATE for Concept Learning
 - A Biased Hypothesis Space
 - An Unbiased Hypothesis Space?

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

\mathcal{X} and \mathcal{Y} :

\$\mathcal{X} = {\mathbf{x}}\$ is the set of all possible feature vectors.
\$\mathcal{Y} = {y}\$ is the set of all possible labels.

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

\mathcal{X} and \mathcal{Y} :

\$\mathcal{X} = {\mathbf{x}}\$ is the set of all possible feature vectors.
\$\mathcal{Y} = {y}\$ is the set of all possible labels.

The Number of Elements in a Set:

For any set A, we let |A| denote the number of elements in A. For example, $|\{a, b, c\}| = 3$.

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

\mathcal{X} and \mathcal{Y} :

\$\mathcal{X} = {\mathbf{x}}\$ is the set of all possible feature vectors.
\$\mathcal{Y} = {y}\$ is the set of all possible labels.

The Number of Elements in a Set:

For any set A, we let |A| denote the number of elements in A. For example, $|\{a, b, c\}| = 3$.

EnjoySport Example:

Attribute	Sky	AirTemp	Humidity	Wind	Water	Forecast
# Values	3	2	2	2	2	2

• The number of possible feature vectors:

• The number of possible labels:

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

\mathcal{X} and \mathcal{Y} :

\$\mathcal{X} = {\mathbf{x}}\$ is the set of all possible feature vectors.
\$\mathcal{Y} = {y}\$ is the set of all possible labels.

The Number of Elements in a Set:

For any set A, we let |A| denote the number of elements in A. For example, $|\{a, b, c\}| = 3$.

EnjoySport Example:

Attribute	Sky	AirTemp	Humidity	Wind	Water	Forecast
# Values	3	2	2	2	2	2

- The number of possible feature vectors: $|\mathcal{X}| = 3 \cdot 2^5 = 96$
- The number of possible labels:

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

\mathcal{X} and \mathcal{Y} :

\$\mathcal{X} = {\mathbf{x}}\$ is the set of all possible feature vectors.
\$\mathcal{Y} = {y}\$ is the set of all possible labels.

The Number of Elements in a Set:

For any set A, we let |A| denote the number of elements in A. For example, $|\{a, b, c\}| = 3$.

EnjoySport Example:

Attribute	Sky	AirTemp	Humidity	Wind	Water	Forecast
# Values	3	2	2	2	2	2

• The number of possible feature vectors: $|\mathcal{X}| = 3 \cdot 2^5 = 96$

• The number of possible labels: $|\mathcal{Y}| = 2$

Counting Hypotheses

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

LIST-THEN-ELIMINATE:

- Syntactically distinct hypotheses: $5 \cdot 4^5 = 5120$
- But $\langle Warm, ?, ?, \emptyset, ?, Change \rangle = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$ and the same holds for any hypothesis containing at least one \emptyset .
- Semantically distinct hypotheses: $1 + 4 \cdot 3^5 = 973$

Counting Hypotheses

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

LIST-THEN-ELIMINATE:

- Syntactically distinct hypotheses: $5 \cdot 4^5 = 5120$
- But $\langle Warm, ?, ?, \emptyset, ?, Change \rangle = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$ and the same holds for any hypothesis containing at least one \emptyset .
- Semantically distinct hypotheses: $1 + 4 \cdot 3^5 = 973$

All possible hypotheses:

- A hypothesis h can be any function from \mathcal{X} to \mathcal{Y} .
- To each feature vector in \mathcal{X} it might assign any label from \mathcal{Y} .
- Semantically distinct hypotheses: $|\mathcal{Y}|^{|\mathcal{X}|} = 2^{96} \approx 10^{29}$

Conclusion:

LIST-THEN-ELIMINATE has a very strong representation bias.

Overview

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

- Organisational Matters
- Hypothesis Spaces
 - Method: Least Squares Linear Regression
 - Being Informal about Feature Vectors
 - Method: LIST-THEN-ELIMINATE for Concept Learning
 - A Biased Hypothesis Space
 - An Unbiased Hypothesis Space?

An Unbiased Hypothesis Space

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

All Possible Hypotheses:

Why not take all possible hypotheses as a hypothesis space for LIST-THEN-ELIMINATE?

 $\mathcal{H} = \{h | h \text{ is a function from } \mathcal{X} \text{ to } \mathcal{Y} \}$

An Unbiased Hypothesis Space

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

```
Biased Hypothesis
Space
```

An Unbiased Hypothesis Space?

All Possible Hypotheses:

Why not take all possible hypotheses as a hypothesis space for LIST-THEN-ELIMINATE?

 $\mathcal{H} = \{h | h \text{ is a function from } \mathcal{X} \text{ to } \mathcal{Y} \}$

LIST-THEN-ELIMINATE:

• Given: data $D = \begin{pmatrix} y_1 \\ \mathbf{x}_1 \end{pmatrix}, \dots, \begin{pmatrix} y_n \\ \mathbf{x}_n \end{pmatrix}$.

• What happens if we try to classify a new feature vector \mathbf{x}_{n+1} ?

Classifying New Instances

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space? For any hypothesis $h \in \mathcal{H}$, there exists a $h' \in \mathcal{H}$ such that

 $h(\mathbf{x}) \neq h'(\mathbf{x})$ if $\mathbf{x} = \mathbf{x_{n+1}}$, $h(\mathbf{x}) = h'(\mathbf{x})$ for any other \mathbf{x} .

Classifying New Instances

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space? For any hypothesis $h \in \mathcal{H}$, there exists a $h' \in \mathcal{H}$ such that

 $h(\mathbf{x}) \neq h'(\mathbf{x})$ if $\mathbf{x} = \mathbf{x_{n+1}}$, $h(\mathbf{x}) = h'(\mathbf{x})$ for any other \mathbf{x} .

Consequence:

Suppose \mathbf{x}_{n+1} does not occur in D.

Then for every $h \in \text{VersionSpace}$, there exists an alternative $h' \in \text{VersionSpace}$ that disagrees on the label of \mathbf{x}_{n+1} :

 $h(\mathbf{x}_{n+1}) \neq h'(\mathbf{x}_{n+1})$

Conclusion:

In an unbiased hypothesis space, the LIST-THEN-ELIMINATE algorithm **cannot generalise** at all. Bias is unavoidable!

Summary

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Summary

Hypothesis h: candidate description of regularity in the data Hypothesis space \mathcal{H} : set of hypotheses being considered

Summary

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Summary

Hypothesis h: candidate description of regularity in the data Hypothesis space \mathcal{H} : set of hypotheses being considered Least squares linear regression:

- Method for regression
- Selects the linear hypothesis that minimizes the sum of squared errors on the data.

Summary

Organisational Matters

Hypothesis Spaces

Least Squares Linear Regression

Being Informal about Feature Vectors

LIST-THEN-ELIMINATE for Concept Learning

Biased Hypothesis Space

An Unbiased Hypothesis Space?

Summary

Hypothesis h: candidate description of regularity in the data
Hypothesis space H: set of hypotheses being considered
Least squares linear regression:

- Method for regression
- Selects the linear hypothesis that minimizes the sum of squared errors on the data.
- The LIST-THEN-ELIMINATE algorithm:
 - Method for classification/concept learning
 - ✤ Finds the set, VersionSpace, of hypotheses in H that are consistent with the data.
 - With \mathcal{H} containing a list of constraints on attributes, it has a strong representation bias.
 - ♦ With H containing all possible hypotheses it cannot generalise: bias is unavoidable!