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Machine Learning 2007: Lecture 3

Instructor: Tim van Erven (Tim.van.Erven@cwi.nl)
Website: www.cwi.nl/˜erven/teaching/0708/ml/

September 20, 2007

www.cwi.nl/~erven/teaching/0708/ml/


Overview

Organisational
Matters

Hypothesis Spaces

Least Squares Linear
Regression

Being Informal about
Feature Vectors

LIST-THEN-ELIMINATE

for Concept Learning

Biased Hypothesis
Space

An Unbiased
Hypothesis Space?

2 / 30

● Organisational Matters
● Hypothesis Spaces
● Method: Least Squares Linear Regression
● Being Informal about Feature Vectors
● Method: LIST-THEN-ELIMINATE for Concept Learning

✦ A Biased Hypothesis Space
✦ An Unbiased Hypothesis Space?



Organisational Matters

Organisational
Matters

Hypothesis Spaces

Least Squares Linear
Regression

Being Informal about
Feature Vectors

LIST-THEN-ELIMINATE

for Concept Learning

Biased Hypothesis
Space

An Unbiased
Hypothesis Space?

3 / 30

Course Organisation:

● Intermediate exam: October 25, 11.00 – 13.00 in 04A05.
● Biweekly exercises

This Lecture versus Mitchell

● All of it is in the book (Chapters 1 and 2), except for “Being
Informal About Feature Vectors”.

● The presentation is different though: We recognise methods
from Mitchell as methods to deal with regression and
classification.
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Prediction: Given data D = y1, . . . , yn, predict how the
sequence continues with yn+1.

Regression: Given data D =

(

y1

x1

)

, . . . ,

(

yn

xn

)

, learn to predict

the value of the label y for any new feature vector x. Typically y

can take infinitely many values. Acceptable if your prediction is
close to the correct y.

Classification: Given data D =

(

y1

x1

)

, . . . ,

(

yn

xn

)

, learn to

predict the class label y for any new feature vector x. Only finitely
many categories. Your prediction is either correct or wrong.
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Definition of a Hypothesis:

A hypothesis h is a candidate description of the regularity or
patterns in your data.

● Prediction example: yn+1 = h(y1, . . . , yn) = yn−1 + yn

● Regression example: y = h(x) = 5x1

● Classification example: y = h(x) =

{

+1 if 3x1 − 20 > 0;

−1 otherwise.

Definition of a Hypothesis Space:

A hypothesis space H is the set {h} of hypotheses that are being
considered.

● Regression example: {ha(x) = a · x1|a ∈ R}
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Linear Regression:

In linear regression the goal is to select a linear hypothesis that
best captures the regularity in the data.
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Linear Function:

y = hw(x) = w0 + w1x1 + . . . + wdxd

● x = (x1, . . . , xd)
⊤ is a d-dimensional feature vector.

● w = (w0, w1, . . ., wd)
⊤ are called the weights .

Examples:

hw(x) = 2 + 9x1 (w0 = 2, w1 = 9)

hw(x) = 3 + 16x1 − 2x3 (w0 = 3, w1 = 16, w2 = 0, w3 = −2)

Hypothesis Space of All Linear Hypotheses:

H = {hw | w ∈ R
d+1}.
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Data generated by a linear function

y = 6x + 20 + ǫ,

where ǫ is noise with distribution N (0, 10). Can we recover this
function from the data alone?
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Squared Error:

For given w, we may evaluate the squared error of hw on a single

data-item
(

yi

xi

)

:

Squared Error = (yi − hw(xi))
2

Least Squares Linear Regression:

Given data D =

(

y1

x1

)

, . . . ,

(

yn

xn

)

, select w to minimize the sum

of squared errors SSE(D) on all data:

min
w

SSE(D) = min
w

n
∑

i=1

(yi − hw(xi))
2.
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The previous example again:
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Original Function
y = 6x + 20 + ǫ
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The previous example again:
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Original Function Least Squares
y = 6x + 20 + ǫ y = 6.38x + 17.37
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Least Squares Linear Regression:

● Only looks for linear patterns in the data.

✦ For example, it cannot discover y = x2
1 even if it gets an

infinite amount of data.

● Minimizes the sum of squared errors.

✦ Why not something else, like for example the sum of
absolute errors?

min
w

n
∑

i=1

|yi − hw(xi)|
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Numbering Attribute Values:

Attribute Sky AirTemp EnjoySport
Value Sunny Cloudy Rainy Warm Cold No Yes
Encoding 1 2 3 1 2 1 2
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Numbering Attribute Values:

Attribute Sky AirTemp EnjoySport
Value Sunny Cloudy Rainy Warm Cold No Yes
Encoding 1 2 3 1 2 1 2

Example:
Sky, AirTemp EnjoySport Representation

Sunny, Warm Yes x =

(

1
1

)

, y = 2

Rainy, Cold No x =

(

3
2

)

, y = 1

Sunny, Cold Yes x =

(

1
2

)

, y = 2

● The difference between feature vectors has no clear meaning. For

example
(

3
2

)

−

(

1
1

)

=

(

2
1

)

.



EnjoySport Representation 2

Organisational
Matters

Hypothesis Spaces

Least Squares Linear
Regression

Being Informal about
Feature Vectors

LIST-THEN-ELIMINATE

for Concept Learning

Biased Hypothesis
Space

An Unbiased
Hypothesis Space?

16 / 30

Another Way to Do It:
Attribute Sky AirTemp EnjoySport
Value Sunny Cloudy Rainy Warm Cold No Yes

Encoding





1
0
0









0
1
0









0
0
1





(

1
0

) (

0
1

)

1 2
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Another Way to Do It:
Attribute Sky AirTemp EnjoySport
Value Sunny Cloudy Rainy Warm Cold No Yes

Encoding





1
0
0









0
1
0









0
0
1





(

1
0

) (

0
1

)

1 2

Example (table is on its side to fit vectors):
Sky, AirTemp Sunny, Warm Rainy, Cold Sunny, Cold
EnjoySport Yes No Yes

Representation x =













1
0
0
1
0













, y = 2 x =













0
0
1
0
1













, y = 1 x =













1
0
0
0
1













, y = 2

● The number of non-zero entries in the difference between two
vectors is twice the number of attributes that differ.
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● (Feature) vectors x and labels y contain numbers.
● But sometimes it will be convenient to be informal

(mathematically imprecise):

Formal Informal

x =

(

1
1

)

⇔ x =

(

Sunny
Warm

)

y = 2 ⇔ y = Yes

● Why?

✦ Reason 1: Don’t care about details of representation.
✦ Reason 2: Emphasize meaning of features and labels.

● Don’t forget what’s really going on!
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A hypothesis h is specified by a list of constraints on the
attributes: Sky, AirTemp, Humidity, Wind, Water, Forecast.

h(x) =

{

yes if x satisfies all constraints,

no otherwise.
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A hypothesis h is specified by a list of constraints on the
attributes: Sky, AirTemp, Humidity, Wind, Water, Forecast.

h(x) =

{

yes if x satisfies all constraints,

no otherwise.

List of constraints looks like: 〈?, Cold, High, ?, ?, ?〉

Attribute Description
? Any value is acceptable for the attribute.
∅ No value is acceptable.

Warm Single required value for attribute (e.g. Warm)
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A hypothesis h is specified by a list of constraints on the
attributes: Sky, AirTemp, Humidity, Wind, Water, Forecast.

h(x) =

{

yes if x satisfies all constraints,

no otherwise.

List of constraints looks like: 〈?, Cold, High, ?, ?, ?〉

Attribute Description
? Any value is acceptable for the attribute.
∅ No value is acceptable.

Warm Single required value for attribute (e.g. Warm)

Hypothesis Space:

H = {h} = {〈?, ?, ?, ?, ?, ?〉, 〈Sunny, ?, ?, ?, ?, ?〉,

〈Warm, ?, ?, ?, ?, ?〉, . . . , 〈∅, ∅, ∅, ∅, ∅, ∅〉}
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● Given: data D =

(

y1

x1

)

, . . .,
(

yn

xn

)

.

● A hypothesis h is consistent with example
(

yi

xi

)

if it assigns

the right label to xi: h(xi) = yi.
● LIST-THEN-ELIMINATE finds the set, VersionSpace, of all

hypotheses that are consistent with the training data.
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● Given: data D =

(

y1

x1

)

, . . .,
(

yn

xn

)

.

● A hypothesis h is consistent with example
(

yi

xi

)

if it assigns

the right label to xi: h(xi) = yi.
● LIST-THEN-ELIMINATE finds the set, VersionSpace, of all

hypotheses that are consistent with the training data.

L IST-THEN-ELIMINATE Algorithm:

1: VersionSpace← H
2: for i = 1, . . . , n do
3: Remove from VersionSpace any h such that h(xi) 6= yi.
4: end for
5: return VersionSpace
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Simplified Hypothesis Space:

Suppose for the moment that H = {〈?, ?〉, 〈Sunny, ?〉, 〈∅, ?〉}.

Example Run:

x1 =

(

Sunny
Warm

)

, y1 = Yes x2 =

(

Rainy
Cold

)

, y2 = No

〈?, ?〉 + −
〈Sunny, ?〉 + +
〈∅, ?〉 − +

● + = consistent, − = inconsistent

Resulting VersionSpace:

VersionSpace = {〈Sunny, ?〉}
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L IST-THEN-ELIMINATE :

● Given: data D =

(

y1

x1

)

, . . .,
(

yn

xn

)

.

● LIST-THEN-ELIMINATE finds the set, VersionSpace, of all
hypotheses that are consistent with the training data.

Classifying New Instances:

● Suppose we get xn+1, how should we classify it?
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L IST-THEN-ELIMINATE :

● Given: data D =

(

y1

x1

)

, . . .,
(

yn

xn

)

.

● LIST-THEN-ELIMINATE finds the set, VersionSpace, of all
hypotheses that are consistent with the training data.

Classifying New Instances:

● Suppose we get xn+1, how should we classify it?
● If all hypotheses in VersionSpace agree on the label of xn+1,

then it’s easy; Otherwise we don’t know:

yn+1 =

{

z if h(xn+1) = z for all h ∈ VersionSpace,

don’t know otherwise.
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Inductive Bias:

● Can only learn target concepts that are contained in the
hypothesis space H.

● Not robust if the target concept is not in H.
● Sensitive to noise/errors in the training data: might

accidentally remove the best hypothesis.
● Doesn’t have any preference between consistent hypotheses.

(Strength or weakness?)
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Inductive Bias:

● Can only learn target concepts that are contained in the
hypothesis space H.

● Not robust if the target concept is not in H.
● Sensitive to noise/errors in the training data: might

accidentally remove the best hypothesis.
● Doesn’t have any preference between consistent hypotheses.

(Strength or weakness?)

Practical Issue:

● Uses too much memory (to store VersionSpace). The book
discusses the CANDIDATE-ELIMINATION algorithm, which
does the same thing using less memory.
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● Organisational Matters
● Hypothesis Spaces
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✦ A Biased Hypothesis Space
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X and Y:

● X = {x} is the set of all possible feature vectors.
● Y = {y} is the set of all possible labels.
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X and Y:

● X = {x} is the set of all possible feature vectors.
● Y = {y} is the set of all possible labels.

The Number of Elements in a Set:

For any set A, we let |A| denote the number of elements in A. For
example, |{a, b, c}| = 3.
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X and Y:

● X = {x} is the set of all possible feature vectors.
● Y = {y} is the set of all possible labels.

The Number of Elements in a Set:

For any set A, we let |A| denote the number of elements in A. For
example, |{a, b, c}| = 3.

EnjoySport Example:

Attribute Sky AirTemp Humidity Wind Water Forecast
# Values 3 2 2 2 2 2

● The number of possible feature vectors:
● The number of possible labels:
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X and Y:

● X = {x} is the set of all possible feature vectors.
● Y = {y} is the set of all possible labels.

The Number of Elements in a Set:

For any set A, we let |A| denote the number of elements in A. For
example, |{a, b, c}| = 3.

EnjoySport Example:

Attribute Sky AirTemp Humidity Wind Water Forecast
# Values 3 2 2 2 2 2

● The number of possible feature vectors: |X | = 3 · 25 = 96
● The number of possible labels:
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X and Y:

● X = {x} is the set of all possible feature vectors.
● Y = {y} is the set of all possible labels.

The Number of Elements in a Set:

For any set A, we let |A| denote the number of elements in A. For
example, |{a, b, c}| = 3.

EnjoySport Example:

Attribute Sky AirTemp Humidity Wind Water Forecast
# Values 3 2 2 2 2 2

● The number of possible feature vectors: |X | = 3 · 25 = 96
● The number of possible labels: |Y| = 2



Counting Hypotheses

Organisational
Matters

Hypothesis Spaces

Least Squares Linear
Regression

Being Informal about
Feature Vectors

LIST-THEN-ELIMINATE

for Concept Learning

Biased Hypothesis
Space

An Unbiased
Hypothesis Space?

26 / 30

L IST-THEN-ELIMINATE :

● Syntactically distinct hypotheses: 5 · 45 = 5120
● But 〈Warm, ?, ?, ∅, ?, Change〉 = 〈∅, ∅, ∅, ∅, ∅, ∅〉 and the same

holds for any hypothesis containing at least one ∅.
● Semantically distinct hypotheses: 1 + 4 · 35 = 973
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L IST-THEN-ELIMINATE :

● Syntactically distinct hypotheses: 5 · 45 = 5120
● But 〈Warm, ?, ?, ∅, ?, Change〉 = 〈∅, ∅, ∅, ∅, ∅, ∅〉 and the same

holds for any hypothesis containing at least one ∅.
● Semantically distinct hypotheses: 1 + 4 · 35 = 973

All possible hypotheses:

● A hypothesis h can be any function from X to Y.
● To each feature vector in X it might assign any label from Y.
● Semantically distinct hypotheses: |Y||X | = 296 ≈ 1029

Conclusion:

LIST-THEN-ELIMINATE has a very strong representation bias .
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● Organisational Matters
● Hypothesis Spaces
● Method: Least Squares Linear Regression
● Being Informal about Feature Vectors
● Method: LIST-THEN-ELIMINATE for Concept Learning

✦ A Biased Hypothesis Space
✦ An Unbiased Hypothesis Space?
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All Possible Hypotheses:

● Why not take all possible hypotheses as a hypothesis space
for LIST-THEN-ELIMINATE?

H = {h|h is a function from X to Y}
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All Possible Hypotheses:

● Why not take all possible hypotheses as a hypothesis space
for LIST-THEN-ELIMINATE?

H = {h|h is a function from X to Y}

L IST-THEN-ELIMINATE :

● Given: data D =

(

y1

x1

)

, . . .,
(

yn

xn

)

.

● What happens if we try to classify a new feature vector xn+1?
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● For any hypothesis h ∈ H, there exists a h′ ∈ H such that

h(x) 6= h′(x) if x = xn+1,

h(x) = h′(x) for any other x.
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● For any hypothesis h ∈ H, there exists a h′ ∈ H such that

h(x) 6= h′(x) if x = xn+1,

h(x) = h′(x) for any other x.

Consequence:

● Suppose xn+1 does not occur in D.
● Then for every h ∈ VersionSpace, there exists an alternative

h′ ∈ VersionSpace that disagrees on the label of xn+1:

h(xn+1) 6= h′(xn+1)

Conclusion:

In an unbiased hypothesis space, the LIST-THEN-ELIMINATE

algorithm cannot generalise at all. Bias is unavoidable!
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● Hypothesis h: candidate description of regularity in the data
● Hypothesis space H: set of hypotheses being considered
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● Hypothesis h: candidate description of regularity in the data
● Hypothesis space H: set of hypotheses being considered
● Least squares linear regression:

✦ Method for regression
✦ Selects the linear hypothesis that minimizes the sum of

squared errors on the data.
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● Hypothesis h: candidate description of regularity in the data
● Hypothesis space H: set of hypotheses being considered
● Least squares linear regression:

✦ Method for regression
✦ Selects the linear hypothesis that minimizes the sum of

squared errors on the data.

● The LIST-THEN-ELIMINATE algorithm:

✦ Method for classification/concept learning
✦ Finds the set, VersionSpace, of hypotheses in H that are

consistent with the data.
✦ With H containing a list of constraints on attributes, it has

a strong representation bias.
✦ With H containing all possible hypotheses it cannot

generalise: bias is unavoidable!
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