Machine Learning 2007: Lecture 4

Instructor: Tim van Erven (Tim.van.Erven@cwi.nl) Website: www.cwi.nl/~erven/teaching/0708/ml/ September 27, 2007

Overview

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions

Organisational Matters

- An Unbiased Hypothesis Space for LIST-THEN-ELIMINATE?
- Math: Directed Graphs and Trees
 - Decision Trees for Classification
 - Hypothesis Space: Decision Trees
 - Method: ID3
- Math: Probability Distributions

Organisational Matters

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions

Course Organisation:

- Biweekly exercises: you get a full week instead of 5 days.
- Exercise 2 available this evening.
- Grades for Exercise 1 available this week.

Study Guide:

- You don't have to know the details of the CANDIATE-ELIMINATION algorithm, just that it does the same thing as the LIST-THEN-ELIMINATE algorithm.
- But sections 2.6 and 2.7 of Mitchell are very important! Just replace each occurrence of CANDIATE-ELIMINATION by LIST-THEN-ELIMINATE when reading them.

This Lecture versus Mitchell:

• Decision trees are in Mitchell, but I will discuss the underlying mathematics in much more detail.

Overview

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions

Organisational Matters

An Unbiased Hypothesis Space for LIST-THEN-ELIMINATE?

Math: Directed Graphs and Trees

- Decision Trees for Classification
 - Hypothesis Space: Decision Trees
 - Method: ID3
- Math: Probability Distributions

LIST-THEN-ELIMINATE Algorithm

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions

Description:

- LIST-THEN-ELIMINATE finds the set, VersionSpace, of all hypotheses that are consistent with all the training data.
- It can only classify a new feature vector \mathbf{x} if all the hypotheses in VersionSpace agree.

Hypothesis Space:

 $\mathcal{H} = \{ \langle ?, ?, ?, ?, ?, ? \rangle, \langle \mathsf{Sunny}, ?, ?, ?, ?, ? \rangle, \\ \langle \mathsf{Warm}, ?, ?, ?, ?, ? \rangle, \dots, \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle \}$

• Has a very strong **representation bias**: Only 973 out of $2^{96} \approx 10^{29}$ possible hypotheses can be represented.

An Unbiased Hypothesis Space

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions

All Possible Hypotheses:

Why not take all possible hypotheses as a hypothesis space for LIST-THEN-ELIMINATE?

 $\mathcal{H} = \{h | h \text{ is a function from } \mathcal{X} \text{ to } \mathcal{Y} \},\$

where

- $\mathcal{X} = set of possible feature vectors,$
- $\mathcal{Y} =$ set of possible labels,

•
$$|\mathcal{H}| = |\mathcal{Y}|^{|\mathcal{X}|} = 2^{96}.$$

An Unbiased Hypothesis Space

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions

All Possible Hypotheses:

Why not take all possible hypotheses as a hypothesis space for LIST-THEN-ELIMINATE?

 $\mathcal{H} = \{h | h \text{ is a function from } \mathcal{X} \text{ to } \mathcal{Y} \},\$

where

- $\mathcal{X} =$ set of possible feature vectors,
- $\mathcal{Y} =$ set of possible labels,
- $|\mathcal{H}| = |\mathcal{Y}|^{|\mathcal{X}|} = 2^{96}.$

Classifying a New Feature Vector:

- Given: data $D = \begin{pmatrix} y_1 \\ \mathbf{x}_1 \end{pmatrix}$, ..., $\begin{pmatrix} y_n \\ \mathbf{x}_n \end{pmatrix}$.
- What happens if we try to classify a new feature vector \mathbf{x}_{n+1} ?

Classifying New Instances

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions For any hypothesis $h \in \mathcal{H}$, there exists a $h' \in \mathcal{H}$ such that

$$h(\mathbf{x}) \neq h'(\mathbf{x})$$
 if $\mathbf{x} = \mathbf{x_{n+1}}$,
 $h(\mathbf{x}) = h'(\mathbf{x})$ for any other \mathbf{x} .

Classifying New Instances

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions For any hypothesis $h \in \mathcal{H}$, there exists a $h' \in \mathcal{H}$ such that

 $h(\mathbf{x}) \neq h'(\mathbf{x})$ if $\mathbf{x} = \mathbf{x_{n+1}}$, $h(\mathbf{x}) = h'(\mathbf{x})$ for any other \mathbf{x} .

Consequence:

Suppose \mathbf{x}_{n+1} does not occur in D.

• Then for every $h \in \text{VersionSpace}$, there exists an alternative $h' \in \text{VersionSpace}$ that disagrees on the label of \mathbf{x}_{n+1} :

 $h(\mathbf{x}_{n+1}) \neq h'(\mathbf{x}_{n+1})$

Conclusion:

In an unbiased hypothesis space, the LIST-THEN-ELIMINATE algorithm **cannot generalise** at all. Bias is unavoidable!

Overview

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

- Organisational Matters
- An Unbiased Hypothesis Space for LIST-THEN-ELIMINATE?
- Math: Directed Graphs and Trees
 - Decision Trees for Classification
 - Hypothesis Space: Decision Trees
 - Method: ID3
- Math: Probability Distributions

Directed Graphs

Organisational Matters

LIST-THEN-ELIMINATE

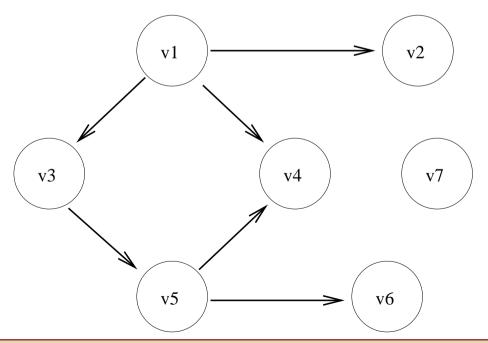
Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions A directed graph G is an ordered pair G = (V, E), where

- $V = \{v_1, \ldots, v_m\}$ is a set of **vertices/nodes**;
- $E = \{e_1, \dots, e_n\}$ is a set of **directed edges** between the vertices in V.
 - Each directed edge e from vertex u to vertex v is an ordered pair e = (u, v).
 - I can draw the same directed graph in different ways.



Directed Graphs

Organisational Matters

LIST-THEN-ELIMINATE

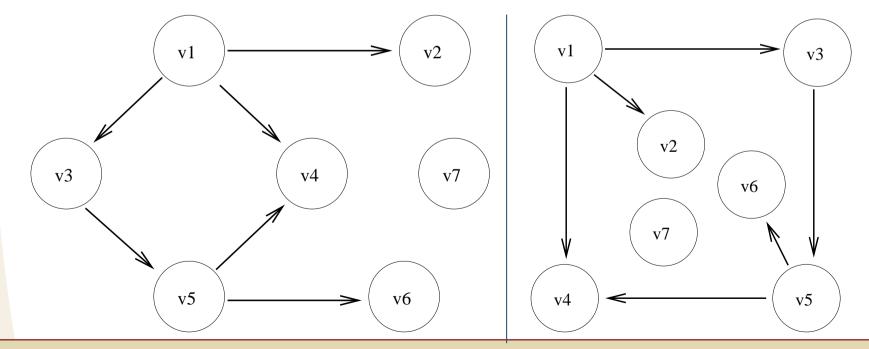
Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions A directed graph G is an ordered pair G = (V, E), where

- $V = \{v_1, \ldots, v_m\}$ is a set of **vertices/nodes**;
- $E = \{e_1, \dots, e_n\}$ is a set of **directed edges** between the vertices in V.
 - Each directed edge e from vertex u to vertex v is an ordered pair e = (u, v).
 - I can draw the same directed graph in different ways.



Directed Graphs with Edge Labels

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

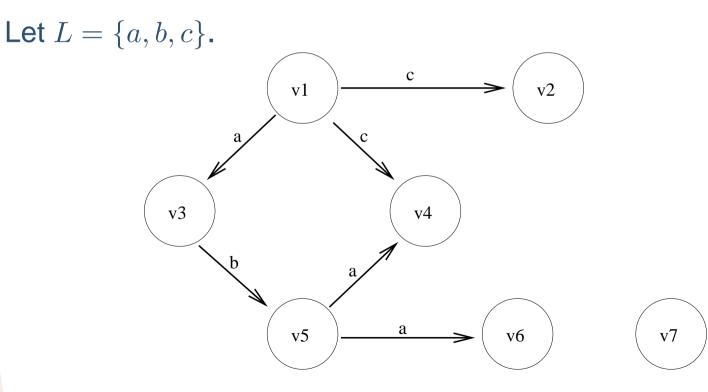
Hypothesis Space: Decision Trees

ID3

Probability Distributions

- We can also **label edges** with labels from some set of possible labels *L*. Now G = (V, E, L).
- Each directed edge e with label $l \in L$ from vertex u to vertex v is an ordered pair e = (u, l, v).

Example:



Tree Examples

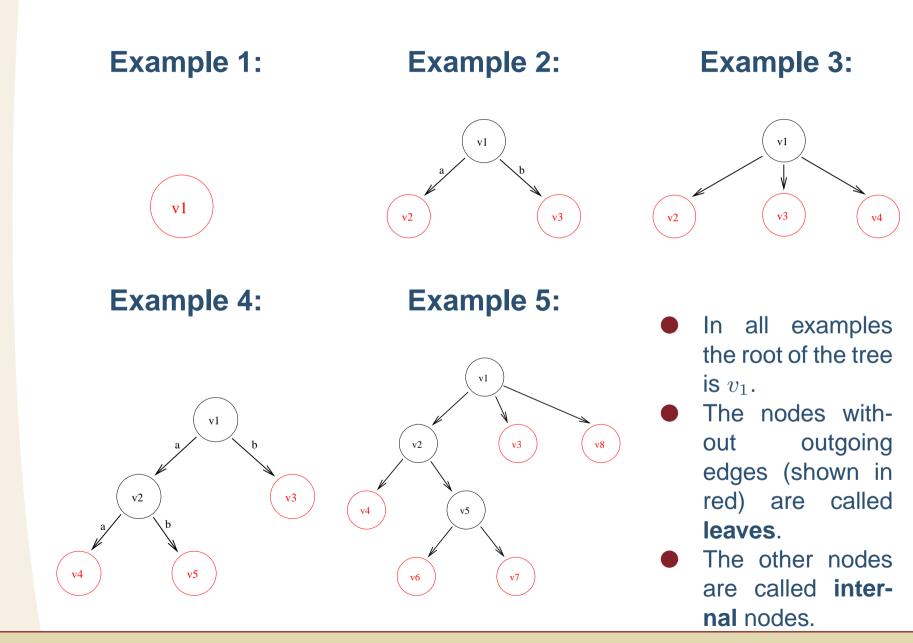
Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3



Directed Trees

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

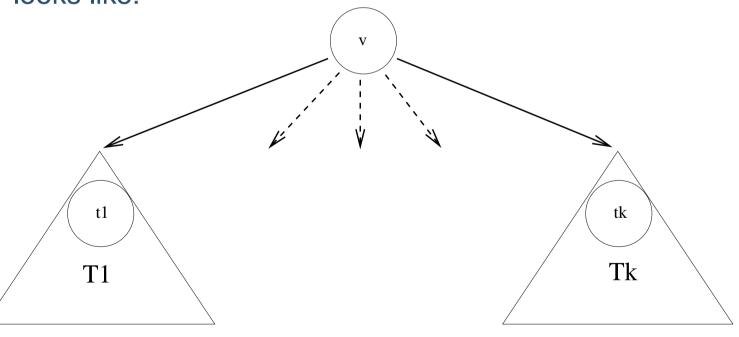
Hypothesis Space: Decision Trees

ID3

Probability Distributions A directed graph is a (directed) tree T = (V, E) with root $v \in V$ if and only if either:

- 1. v is the only node: $T = (\{v\}, \emptyset)$, or
 - T_1, \ldots, T_k are trees with roots t_1, \ldots, t_k ,
 - v, T_1, \ldots, T_k have no nodes in common, and
 - T looks like:

2.



Properties of Trees

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions Let T be a (directed) tree.

• If T contains an edge e = (u, v) from node u to node v, then

- u is called the **parent** of v,
- v is called the **child** of u.

Properties of Trees

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

Probability Distributions

Let T be a (directed) tree.

- If T contains an edge e = (u, v) from node u to node v, then
 - u is called the **parent** of v,
 - v is called the **child** of u.

Number of Parents:

 Each node has exactly one parent, except for the root, which has no parents.

Properties of Trees

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions

Let T be a (directed) tree.

- If T contains an edge e = (u, v) from node u to node v, then
 - u is called the **parent** of v,
 - v is called the **child** of u.

Number of Parents:

• Each node has exactly one parent, except for the **root**, which has no parents.

Number of Children:

- Each node may have any (finite) number of children.
- The leaves are the nodes without children.
- The internal nodes have at least one child.

Overview

Organisational Matters

LIST-THEN-ELIMINATE

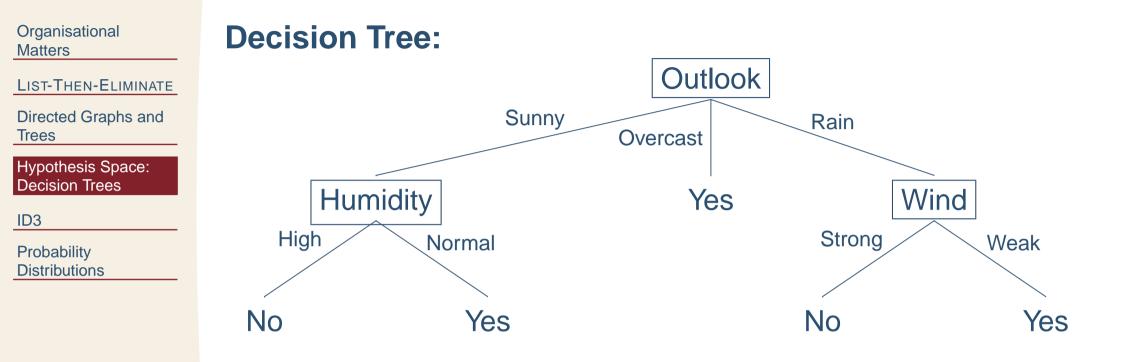
Directed Graphs and Trees

Hypothesis Space: Decision Trees

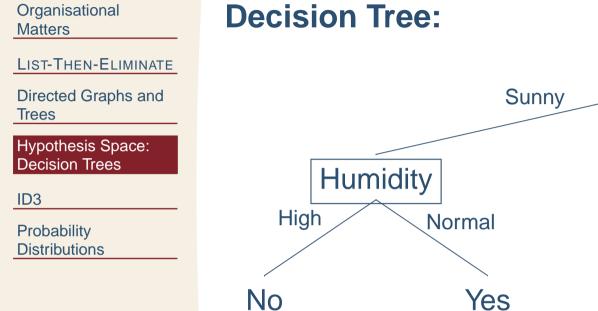
ID3

- Organisational Matters
- An Unbiased Hypothesis Space for LIST-THEN-ELIMINATE?
- Math: Directed Graphs and Trees
- Decision Trees for Classification
 - Hypothesis Space: Decision Trees
 - Method: ID3
- Math: Probability Distributions

Decision Trees: Hypothesis Space



Decision Trees: Hypothesis Space



		Outl	ook			
	Sunny	Overcast		Rain		
Humidity		Ye	es		Wind	
gh N	ormal			Strong		Weak
	Yes		1	No		Yes

Part of tree	Interpretation	Example	
Internal node	Attribute	Outlook	
Leaf node	Class label	Yes	
Edge label	Attribute value	Sunny	

Decision Trees: Hypothesis Space

Organisational Matters	Decision 1	Tree:	
LIST-THEN-ELIMINATE			Outlook
Directed Graphs and Trees		Sunny	Overcast
Hypothesis Space: Decision Trees	Hum	idity	Yes
ID3 Probability	High	Normal	
Distributions			
	No	Yes	
		Part of tree	Interpretation
			•
		Internal node	Attribute
		Leaf node	Class label
		Edge label	Attribute value

Mitchell does not draw the arrows. They all point downwards.

Rain

Strong

No

Example

Outlook

Yes

Sunny

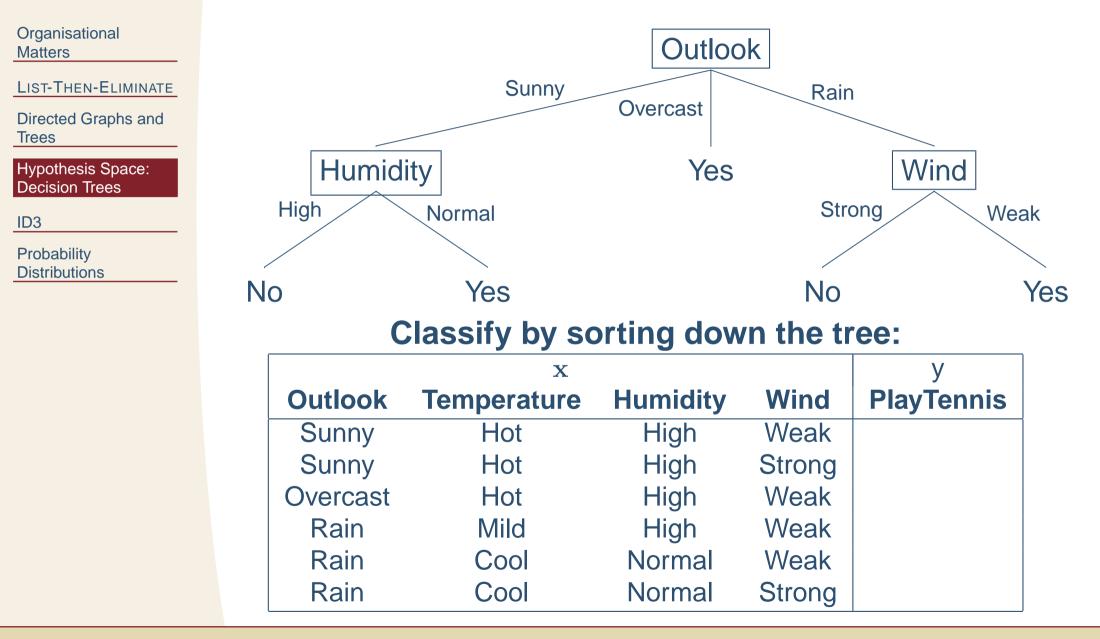
Wind

Weak

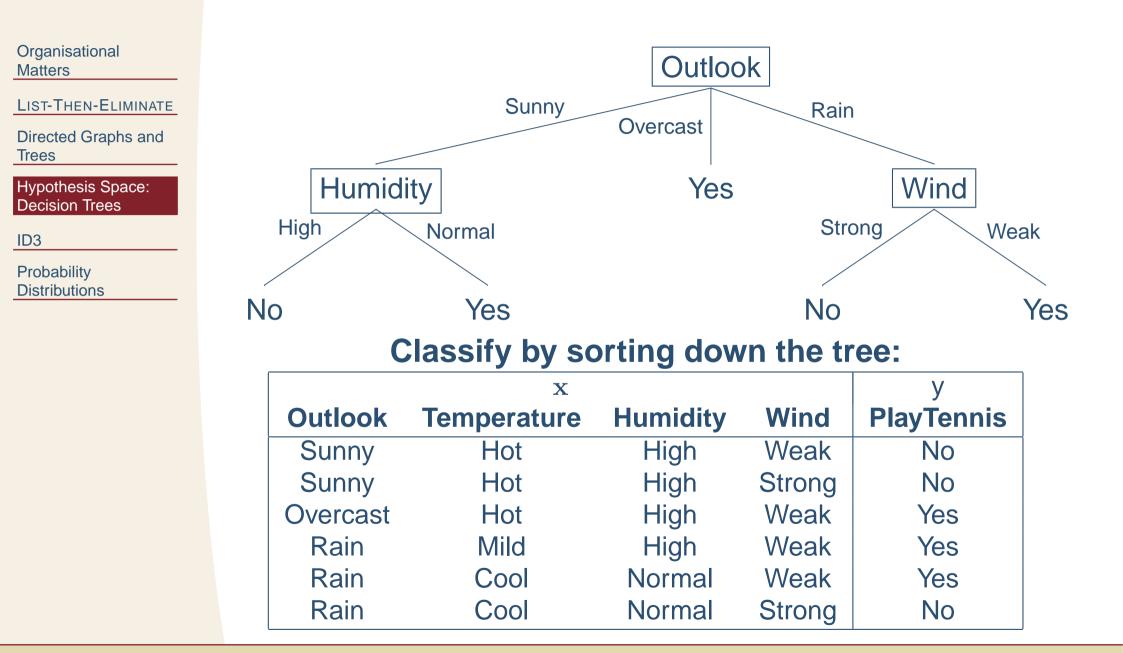
Yes

 \mathcal{H} is the set of all possible decision trees.

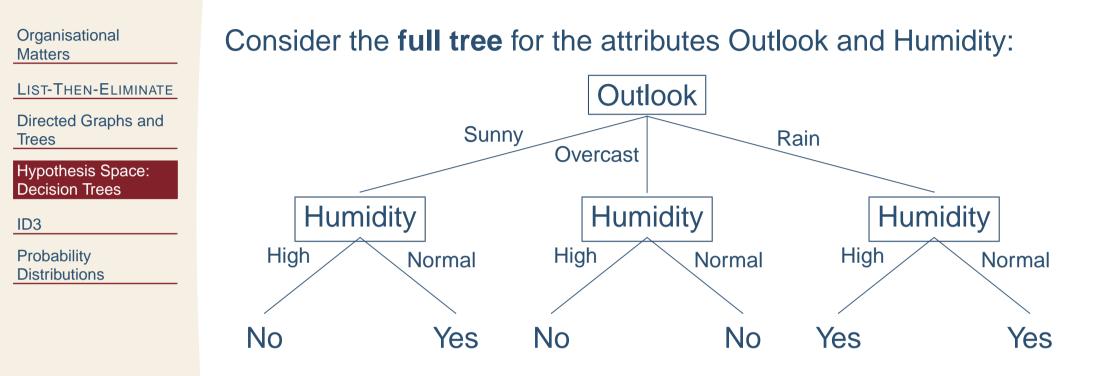
Decision Trees: Classification Examples



Decision Trees: Classification Examples



Unbiased Hypothesis Space



- By changing the labels at the leaves of the tree, we can describe **any** hypothesis about Outlook and Humidity.
- We can do the same thing for all attributes: No representation bias!
- But the size of the full tree blows up exponentially in the number of attributes.

Overview

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

- Organisational Matters
- An Unbiased Hypothesis Space for LIST-THEN-ELIMINATE?
- Math: Directed Graphs and Trees
 - Decision Trees for Classification
 - Hypothesis Space: Decision Trees
 - Method: ID3
- Math: Probability Distributions

The ID3 Algorithm

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions

General:

- Learns a decision tree from data.
- Hence does classification.

Main Ideas:

- 1. Start by selecting a root attribute for the tree.
- 2. Then grow the tree by adding more and more attributes to it.
- 3. Stop growing the tree when it is consistent with all the data.

The ID3 Algorithm

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions

General:

- Learns a decision tree from data.
- Hence does classification.

Main Ideas:

- 1. Start by selecting a root attribute for the tree.
- 2. Then grow the tree by adding more and more attributes to it.
- 3. Stop growing the tree when it is consistent with all the data.

Some Notation:

- The data $D = \begin{pmatrix} y_1 \\ \mathbf{x}_1 \end{pmatrix}$, ..., $\begin{pmatrix} y_n \\ \mathbf{x}_n \end{pmatrix}$
- A = the set of features/attributes that may be used to grow the decision tree. (For example, $A = \{2, 5, 6\}$ represents that we may use attributes x_2 , x_5 and x_6 to grow the tree.)

•
$$D_{a,v} = \left\{ \begin{pmatrix} y_i \\ \mathbf{x}_i \end{pmatrix} \mid \mathbf{x}_i \text{ has value } v \text{ for attribute } x_a \right\}$$

The ID3 Algorithm

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions

ID3(D, A)

1: z = the most common label y in D2: if y is the same for all examples in D or $A = \emptyset$ then return $T = (\{z\}, \emptyset)$ 3: 4: 5: Select the best¹ attribute $a \in A$ with values v_1, \ldots, v_k . 6: $T_i = \begin{cases} (\{z\}, \emptyset) & \text{if } D_{a,v_i} = \emptyset \\ \mathsf{ID3}(D_{a,v_i}, A \setminus \{a\}) & \text{otherwise} \end{cases}$ vk v1 7: return t1 tk Tk **T**1

¹To be defined later

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions ID3 does not have a representation bias, because decision trees provide an unbiased hypothesis space. So where does the bias come in?

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

- ID3 does not have a representation bias, because decision trees provide an unbiased hypothesis space. So where does the bias come in?
- It prefers shorter decision trees! This is called a preference bias.

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

- ID3 does not have a representation bias, because decision trees provide an unbiased hypothesis space. So where does the bias come in?
- It prefers shorter decision trees! This is called a preference bias.
- Not completely robust against noise/errors in the data, because it always finds a decision tree that is consistent with all training data. (Maybe a much smaller tree exists that only makes a single mistake!)
- Next week we will see an extension, C4.5, which addresses this problem.

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

- ID3 does not have a representation bias, because decision trees provide an unbiased hypothesis space. So where does the bias come in?
- It prefers shorter decision trees! This is called a preference bias.
- Not completely robust against noise/errors in the data, because it always finds a decision tree that is consistent with all training data. (Maybe a much smaller tree exists that only makes a single mistake!)
- Next week we will see an extension, C4.5, which addresses this problem.
- Not suitable if features/attributes can take infinitely many values (e.g. all real numbers): infinite number of children for the corresponding node in the decision tree.

Overview

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

- Organisational Matters
- An Unbiased Hypothesis Space for LIST-THEN-ELIMINATE?
- Math: Directed Graphs and Trees
 - Decision Trees for Classification
 - Hypothesis Space: Decision Trees
 - Method: ID3
- Math: Probability Distributions

Probability Distributions

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions The **sample space** $\Omega = \{\omega_1, \ldots, \omega_k\}$ is the set of all possible outcomes of an experiment.

An event $\mathcal{E} \subseteq \Omega$ is a (sub)set of possible outcomes.

Probability Distributions

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions The **sample space** $\Omega = \{\omega_1, \ldots, \omega_k\}$ is the set of all possible outcomes of an experiment.

An event $\mathcal{E} \subseteq \Omega$ is a (sub)set of possible outcomes.

• A (probability) mass function $p(\omega_i)$ assigns a weight to each *outcome* $\omega_i \in \Omega$ such that:

 $\bullet \quad 0 \le p(\omega_i) \le 1$

$$p(\omega_1) + \ldots + p(\omega_k) = 1$$

Probability Distributions

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions The **sample space** $\Omega = \{\omega_1, \dots, \omega_k\}$ is the set of all possible outcomes of an experiment.

An event $\mathcal{E} \subseteq \Omega$ is a (sub)set of possible outcomes.

• A (probability) mass function $p(\omega_i)$ assigns a weight to each *outcome* $\omega_i \in \Omega$ such that:

 $\bullet \quad 0 \le p(\omega_i) \le 1$

$$p(\omega_1) + \ldots + p(\omega_k) = 1$$

• Any mass function $p(\omega_i)$ defines a **(probability) distribution** $P(\mathcal{E})$, which assigns a probability to each *event* $\mathcal{E} \subseteq \Omega$:

$$P(\mathcal{E}) = \sum_{\{i \mid \omega_i \in \mathcal{E}\}} p(\omega_i)$$

Probability Distributions

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions The **sample space** $\Omega = \{\omega_1, \dots, \omega_k\}$ is the set of all possible outcomes of an experiment.

An event $\mathcal{E} \subseteq \Omega$ is a (sub)set of possible outcomes.

• A (probability) mass function $p(\omega_i)$ assigns a weight to each *outcome* $\omega_i \in \Omega$ such that:

 $\bullet \quad 0 \le p(\omega_i) \le 1$

$$p(\omega_1) + \ldots + p(\omega_k) = 1$$

• Any mass function $p(\omega_i)$ defines a **(probability) distribution** $P(\mathcal{E})$, which assigns a probability to each *event* $\mathcal{E} \subseteq \Omega$:

$$P(\mathcal{E}) = \sum_{\{i \mid \omega_i \in \mathcal{E}\}} p(\omega_i)$$

• Frequentist interpretation of $P(\mathcal{E})$: If we perform the experiment n times, then the relative frequency of observing an outcome $\omega_i \in \mathcal{E}$ goes to $P(\mathcal{E})$ as $n \to \infty$.

Examples of Probability Distributions

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: **Decision Trees**

ID3

Probability Distributions

Example 1: **Suppose** $\Omega = \{a, b, c\}$ and p(a) = p(b) = p(c) = 1/3.

Then $P(\{a\}) = P(\{b\}) = P(\{c\}) = 1/3$, $P(\{a, b\}) = p(a) + p(b) = 2/3,$ • $P(\emptyset) = P(\{\}) = 0,$

 $P(\Omega) = P(\{a, b, c\}) = p(a) + p(b) + p(c) = 1.$

Examples of Probability Distributions

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions **Example 1:** Suppose $\Omega = \{a, b, c\}$ and p(a) = p(b) = p(c) = 1/3. Then $P(\{a\}) = P(\{b\}) = P(\{c\}) = 1/3$,

• $P(\{a,b\}) = p(a) + p(b) = 2/3$,

- $P(\emptyset) = P(\{\}) = 0$,
- $P(\Omega) = P(\{a, b, c\}) = p(a) + p(b) + p(c) = 1.$

Example 2:

Suppose $\Omega = \{1, 2, ..., 10\}$ and p(i) = i/55.

- Then $P(\emptyset) = 0$, $P(\Omega) = 1$,
- $P(\{3,4,8\}) = (3+4+8)/55 = 3/11.$

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions

The Impossible and the Certain Event: $P(\emptyset) = \sum_{\{i \mid \omega_i \in \emptyset\}} p(\omega_i) = 0 \quad P(\Omega) = 1$

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions The Impossible and the Certain Event: $P(\emptyset) = \sum_{\{i \mid \omega_i \in \emptyset\}} p(\omega_i) = 0 \quad P(\Omega) = 1$

Combining Events:

For any two events $\mathcal{E}_1, \mathcal{E}_2 \subseteq \Omega$, the

- union $\mathcal{E}_1 \cup \mathcal{E}_2 = \{\omega_i \mid \omega_i \in \mathcal{E}_1 \text{ or } \omega_i \in \mathcal{E}_2\}$ and
- intersection $\mathcal{E}_1 \cap \mathcal{E}_2 = \{\omega_i \mid \omega_i \in \mathcal{E}_1 \text{ and } \omega_i \in \mathcal{E}_2\}$

are also events.

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions The Impossible and the Certain Event: $P(\emptyset) = \sum_{\{i | \omega_i \in \emptyset\}} p(\omega_i) = 0 \quad P(\Omega) = 1$

Combining Events:

For any two events $\mathcal{E}_1, \mathcal{E}_2 \subseteq \Omega$, the

- union $\mathcal{E}_1 \cup \mathcal{E}_2 = \{\omega_i \mid \omega_i \in \mathcal{E}_1 \text{ or } \omega_i \in \mathcal{E}_2\}$ and
- intersection $\mathcal{E}_1 \cap \mathcal{E}_2 = \{\omega_i \mid \omega_i \in \mathcal{E}_1 \text{ and } \omega_i \in \mathcal{E}_2\}$

are also events.

Relating the Probability of Unions and Intersections:

 $P(\mathcal{E}_1 \cup \mathcal{E}_2) = P(\mathcal{E}_1) + P(\mathcal{E}_2) - P(\mathcal{E}_1 \cap \mathcal{E}_2)$ (1)

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions The Impossible and the Certain Event: $P(\emptyset) = \sum_{\{i | \omega_i \in \emptyset\}} p(\omega_i) = 0 \quad P(\Omega) = 1$

Combining Events:

For any two events $\mathcal{E}_1, \mathcal{E}_2 \subseteq \Omega$, the

- union $\mathcal{E}_1 \cup \mathcal{E}_2 = \{\omega_i \mid \omega_i \in \mathcal{E}_1 \text{ or } \omega_i \in \mathcal{E}_2\}$ and
- intersection $\mathcal{E}_1 \cap \mathcal{E}_2 = \{\omega_i \mid \omega_i \in \mathcal{E}_1 \text{ and } \omega_i \in \mathcal{E}_2\}$

are also events.

Relating the Probability of Unions and Intersections:

 $P(\mathcal{E}_1 \cup \mathcal{E}_2) = P(\mathcal{E}_1) + P(\mathcal{E}_2) - P(\mathcal{E}_1 \cap \mathcal{E}_2)$ (1)

An Event Not Happening:

- For any event \mathcal{E} , its **complement** $\overline{\mathcal{E}} = \{\omega_i \mid \omega_i \notin \mathcal{E}\}$ is the event describing that \mathcal{E} does **not** occur.
 - It follows from (1) that $P(\overline{\mathcal{E}}) = 1 P(\mathcal{E})$.

Conditional Probability

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions Suppose *P* is a probability distribution on sample space Ω , and $\mathcal{E}_1, \mathcal{E}_2 \subseteq \Omega$ are events.

Definition:

The conditional probability $P(\mathcal{E}_1 \mid \mathcal{E}_2)$ of \mathcal{E}_1 given \mathcal{E}_2 is

 $P(\mathcal{E}_1 \mid \mathcal{E}_2) = \frac{P(\mathcal{E}_1 \cap \mathcal{E}_2)}{P(\mathcal{E}_2)}.$

Example:

Let $\Omega = \{aa, ab, ba, bb\}$. Then

$$P(\{ba\} \mid \{ab, ba\}) = \frac{P(\{ba\})}{P(\{ab, ba\})}$$

Random Variables

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions Let $\Omega = \{\omega_1, \ldots, \omega_k\}$ be a sample space.

Definition: A random variable $X(\omega_i)$ is a function from Ω to \mathbb{R} . **Example:**

Suppose $\Omega = \{aa, ab, ba, bb\}$. Then we might define the random variable that counts the number of *a*'s in an outcome: X(aa) = 2, X(ab) = 1, X(ba) = 1, X(bb) = 0.

Random Variables

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions Let $\Omega = \{\omega_1, \ldots, \omega_k\}$ be a sample space.

Definition: A random variable $X(\omega_i)$ is a function from Ω to \mathbb{R} . **Example:**

Suppose $\Omega = \{aa, ab, ba, bb\}$. Then we might define the random variable that counts the number of *a*'s in an outcome: X(aa) = 2, X(ab) = 1, X(ba) = 1, X(bb) = 0.

Probability Distribution of a Random Variable:

• Suppose P is a probability distribution on Ω .

• We define the shorthand notation:

$$P(X = x) = P(\{\omega_i \mid X(\omega_i) = x\}).$$

Example Continued:

 $P(X=1) = P(\{ab, ba\})$

Overview

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions

- Organisational Matters
- An Unbiased Hypothesis Space for LIST-THEN-ELIMINATE?
- Math: Directed Graphs and Trees
 - Decision Trees for Classification
 - Hypothesis Space: Decision Trees
 - Method: ID3
- Math: Probability Distributions

References

Organisational Matters

LIST-THEN-ELIMINATE

Directed Graphs and Trees

Hypothesis Space: Decision Trees

ID3

Probability Distributions

- D. Wood, "Theory of Computation," Harper and Row, Publishers, 1987.
- A.N. Shiryaev, "Probability", Second Edition, 1996