Machine Learning 2007: Lecture 7

Instructor: Tim van Erven (Tim.van.Erven@cwi.nl) Website: www.cwi.nl/~erven/teaching/0708/ml/ October 18, 2007

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

Organisational Matters

- Answers Exercises 2
- Linear Functions as Inner Products
- Vector Valued Outputs in Regression and Classification
- Neural Networks and the Perceptron
 - Neural Networks
 - The Perceptron
 - Implementing Boolean Functions with a Perceptron
- Convex Functions
- Gradient Descent (part 1)

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

Room of the intermediate exam changed to: **Q105**. Not necessary to enroll on tisvu.

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

Room of the intermediate exam changed to: **Q105**. Not necessary to enroll on tisvu.

Next lecture (in two weeks) will be on Wednesday at 13.30-15.15 in room KC159.

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

- Room of the intermediate exam changed to: **Q105**. Not necessary to enroll on tisvu.
- Next lecture (in two weeks) will be on Wednesday at 13.30-15.15 in room KC159.
- Do not submit Office 2007 (.docx) files for the homework. Pdf is preferred; older Office (.doc) is acceptable.

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

- Room of the intermediate exam changed to: Q105.
 Not necessary to enroll on tisvu.
- Next lecture (in two weeks) will be on Wednesday at 13.30-15.15 in room KC159.
- Do not submit Office 2007 (.docx) files for the homework. Pdf is preferred; older Office (.doc) is acceptable.

Mitchell:

Read: Chapter 4, sections 4.1–4.4.

This Lecture:

- Explanation of linear functions as inner products is needed to understand Mitchell.
- Neural networks are in Mitchell. I have some extra pictures.
- Convex functions are not discussed in Mitchell.
- I will give more background on gradient descent.

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

- Organisational Matters
- Answers Exercises 2
- Linear Functions as Inner Products
- Vector Valued Outputs in Regression and Classification
- Neural Networks and the Perceptron
 - Neural Networks
 - The Perceptron
 - Implementing Boolean Functions with a Perceptron
- Convex Functions
- Gradient Descent (part 1)

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

- Organisational Matters
- Answers Exercises 2

Linear Functions as Inner Products

- Vector Valued Outputs in Regression and Classification
- Neural Networks and the Perceptron
 - Neural Networks
 - The Perceptron
 - Implementing Boolean Functions with a Perceptron
- Convex Functions
- Gradient Descent (part 1)

Linear Functions as Inner Products

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

Linear Function:

$$h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + \ldots + w_d x_d$$

x = (x₁,...,x_d)[⊤] is a *d*-dimensional feature vector. **w** = (w₀, w₁, ..., w_d)[⊤] is a *d* + 1-dimensional weight vector.

Linear Functions as Inner Products

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

Linear Function:

 $h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + \ldots + w_d x_d$

x = (x₁,...,x_d)[⊤] is a *d*-dimensional feature vector. **w** = (w₀, w₁, ..., w_d)[⊤] is a d + 1-dimensional weight vector.

As Inner Products (a standard trick):

We may change x into a d + 1-dimensional vector x' by adding an imaginary extra feature x_0 , which always has value 1:

$$\mathbf{x} = (x_1, \dots, x_d)^\top \quad \Rightarrow \quad \mathbf{x}' = (1, x_1, \dots, x_d)^\top$$

$$h_{\mathbf{w}}(\mathbf{x}) = \sum_{i=0}^{d} w_i x'_i = \langle \mathbf{w}, \mathbf{x}' \rangle$$

Mitchell writes $\mathbf{w} \cdot \mathbf{x}'$ for $\langle \mathbf{w}, \mathbf{x}' \rangle$.

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

- Organisational Matters
- Answers Exercises 2
- Linear Functions as Inner Products
- Vector Valued Outputs in Regression and Classification
- Neural Networks and the Perceptron
 - Neural Networks
 - The Perceptron
 - Implementing Boolean Functions with a Perceptron
- Convex Functions
- Gradient Descent (part 1)

Vector Valued Outputs

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

Reminder:

- Regression: Predict the label y for any feature vector \mathbf{x} . Typically y can take infinitely many values.
- Classification: Predict the class label y for any new feature vector x. Only finitely many categories for y.

Vector Valued Outputs

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

Reminder:

- Regression: Predict the label y for any feature vector \mathbf{x} . Typically y can take infinitely many values.
- Classification: Predict the class label y for any new feature vector x. Only finitely many categories for y.

Vector Valued Outputs:

- In our definition the label y is a single value.
- This can be generalised to a label **vector** y.
- Neural networks typically output label vectors.

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

- Organisational Matters
- Answers Exercises 2
- Linear Functions as Inner Products
- Vector Valued Outputs in Regression and Classification
- Neural Networks and the Perceptron
 - Neural Networks
 - The Perceptron
 - Implementing Boolean Functions with a Perceptron
- Convex Functions
- Gradient Descent (part 1)

Biology

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

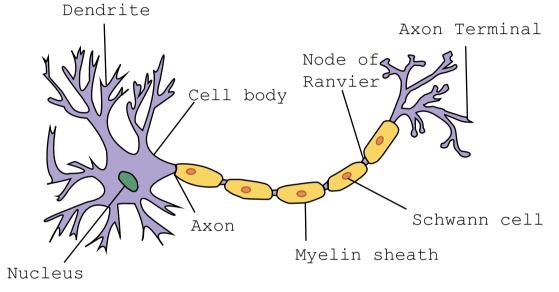
Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

A Neuron [Wikimedia Commons]:



The Brain:

- The brain is a complex network of approximately $10^{11} = 100\ 000\ 000\ 000$ neurons.
- On average each neuron is connected to approximately $10^4 = 10\ 000$ other neurons.
- Each neuron has many input channels (dendrites) and one output channel (axon).

Artificial Neurons

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

An Artificial Neuron:

An (artificial) **neuron** is some function h that gets a feature vector x as input and outputs a (single) label y.

Artificial Neurons

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

An Artificial Neuron:

An (artificial) **neuron** is some function h that gets a feature vector x as input and outputs a (single) label y.

The Perceptron:

The most famous type of (artificial) neuron is the perceptron:

$$h_{\mathbf{w}}(\mathbf{x}) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \dots w_d x_d > 0, \\ -1 & \text{otherwise.} \end{cases}$$

Applies a threshold to a linear function of x.

• Has parameters w.

Artificial Neural Networks

Organisational Matters

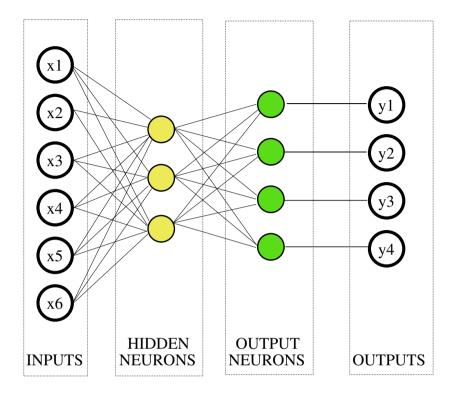
Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions



- We can create an (artificial) neural network (NN) by connecting neurons together.
- We hook up our feature vector x to the input neurons in the network. We get a label vector y from the output neurons.

Artificial Neural Networks

Organisational Matters

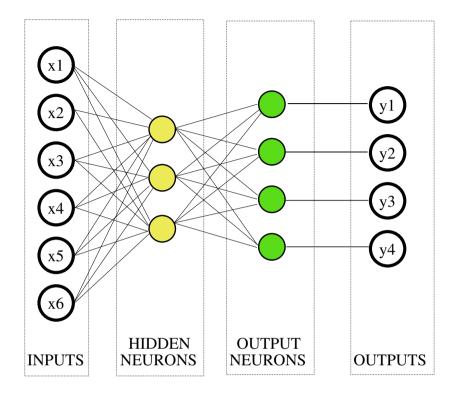
Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions



- We can create an (artificial) neural network (NN) by connecting neurons together.
- We hook up our feature vector x to the input neurons in the network. We get a label vector y from the output neurons.
- The parameters of the neural network w consist of all the parameters of the neurons in the network taken together in one vector.

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

Modelling Biology:

- Some researchers want to study biological learning processes.
- They may try to model them using artificial neural networks.

Why Study Neural Networks?

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

Modelling Biology:

- Some researchers want to study biological learning processes.
- They may try to model them using artificial neural networks.
- This is not us!
- In machine learning we often use artificial neural networks that are poor models of biological neural networks.

Why Study Neural Networks?

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

Modelling Biology:

- Some researchers want to study biological learning processes.
- They may try to model them using artificial neural networks.
- This is not us!
 - In machine learning we often use artificial neural networks that are poor models of biological neural networks.

Obtaining Effective ML Algorithms:

- We want effective machine learning algorithms.
- An (artificial) neural network is a hypothesis space \mathcal{H} .
- Each setting of the parameters w corresponds to a different hypothesis $h_{w} \in \mathcal{H}$.
- This hypothesis space may be used for **regression** or **classification**.

NN Example: ALVINN

Organisational Matters

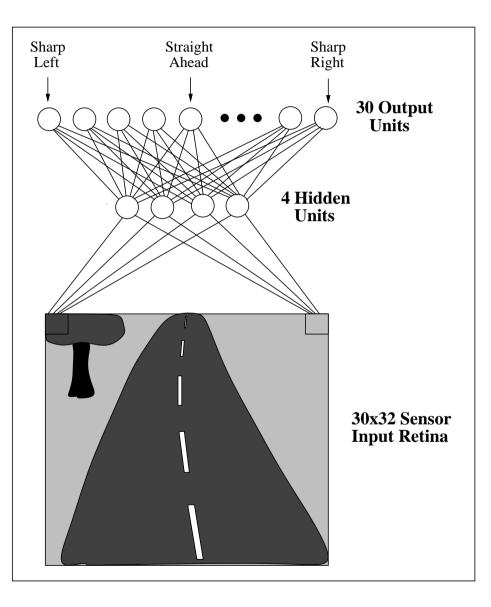
Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions



Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

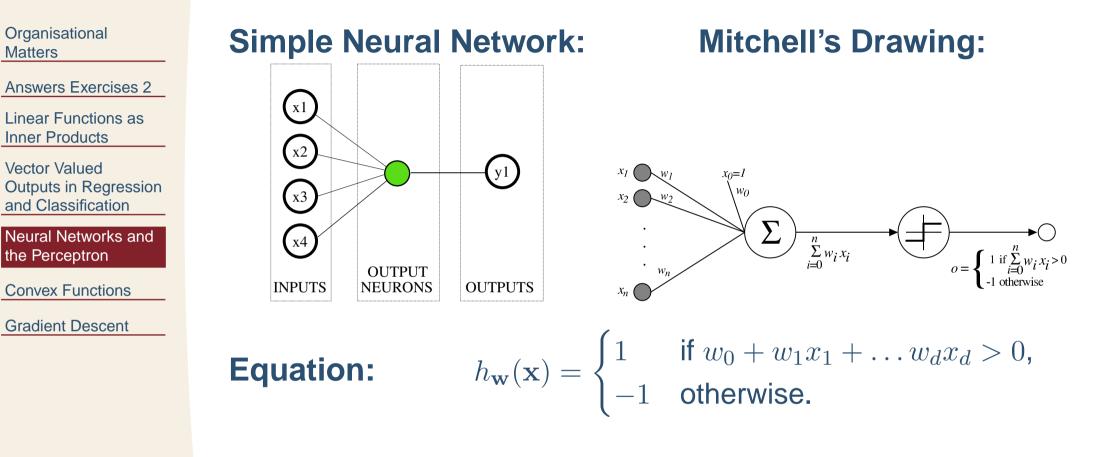
Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

- Organisational Matters
- Answers Exercises 2
- Linear Functions as Inner Products
- Vector Valued Outputs in Regression and Classification
- Neural Networks and the Perceptron
 - Neural Networks
 - The Perceptron
 - Implementing Boolean Functions with a Perceptron
- Convex Functions
- Gradient Descent (part 1)

Different Views of The Perceptron



Different Views of The Perceptron

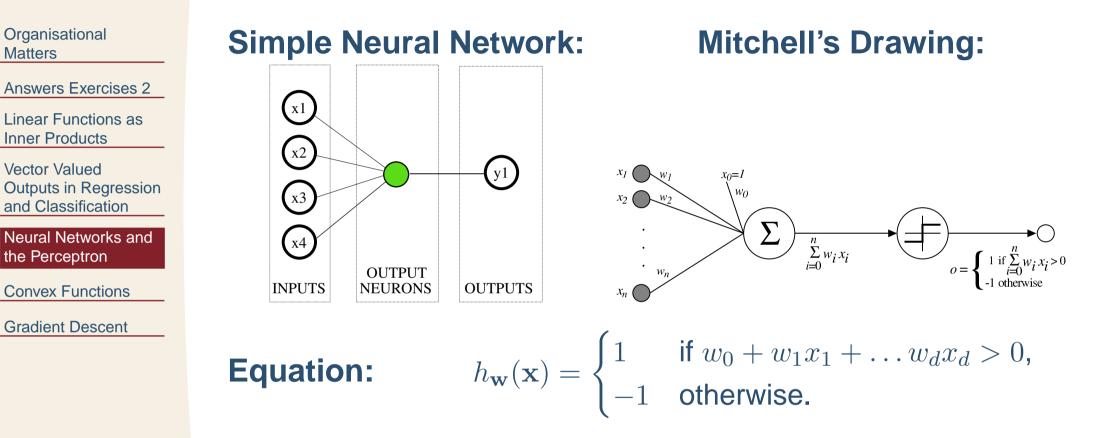
Organisational

Inner Products

Vector Valued

the Perceptron

Matters



- One of the most simple neural networks consists of just one perceptron neuron.
- A perceptron does classification.

Different Views of The Perceptron

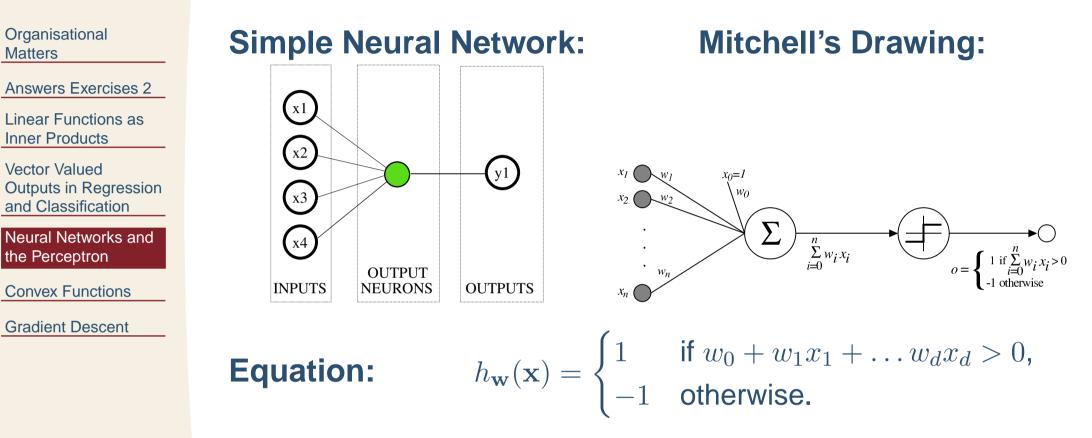
Organisational

Inner Products

Vector Valued

the Perceptron

Matters



- One of the most simple neural networks consists of just one perceptron neuron.
- A perceptron does **classification**.
- The network has no hidden units, and just one output.
- It may have any number of inputs.

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

- Organisational Matters
- Answers Exercises 2
- Linear Functions as Inner Products
- Vector Valued Outputs in Regression and Classification
- Neural Networks and the Perceptron
 - Neural Networks
 - The Perceptron
 - Implementing Boolean Functions with a Perceptron
- Convex Functions
- Gradient Descent (part 1)

Decision Boundary of the Perceptron

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

Decision boundary: $w_0 + w_1 x_1 + ... + w_d x_d = 0$

This is where the perceptron changes its output y from -1 (-) to +1 (+) if we change x a little bit.

Always a line.

Decision Boundary of the Perceptron

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

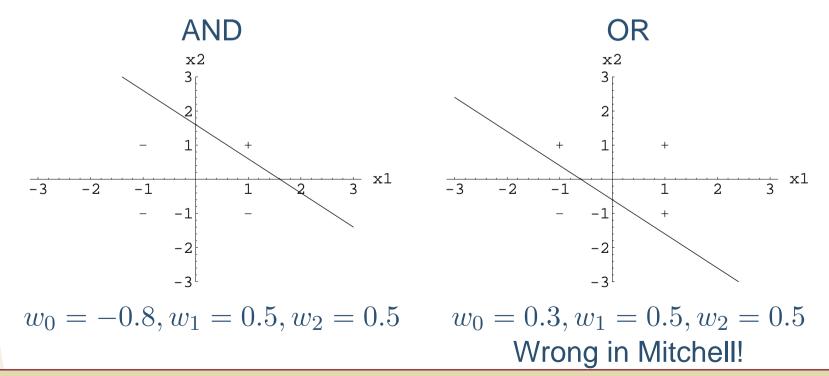
Convex Functions

Gradient Descent

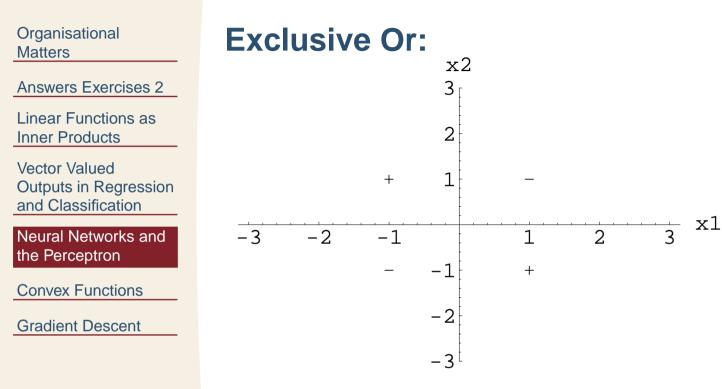
Decision boundary: $w_0 + w_1 x_1 + ... + w_d x_d = 0$

- This is where the perceptron changes its output y from -1 (-) to +1 (+) if we change x a little bit.
- Always a line.

Examples of different Weights (with Boolean inputs: -1 = false, 1 = true):



Perceptron Cannot Represent Exclusive Or



There exists no line that separates the inputs with label '-' from the inputs with label '+'. They are not linearly separable.

Perceptron Cannot Represent Exclusive Or

Organisational **Exclusive Or:** Matters x^2 Answers Exercises 2 3 Linear Functions as 2 Inner Products Vector Valued 1 +**Outputs in Regression** and Classification 3 Neural Networks and - 3 -2 -1 1 2 the Perceptron -1 +**Convex Functions** -2 **Gradient Descent** - 3

There exists no line that separates the inputs with label '-' from the inputs with label '+'. They are not linearly separable.

x1

- The decision boundary for the perceptron is always a line.
- Hence a perceptron can never implement the 'exclusive or' function, whichever weights we choose.

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

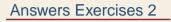
Neural Networks and the Perceptron

Convex Functions

- Organisational Matters
- Answers Exercises 2
- Linear Functions as Inner Products
- Vector Valued Outputs in Regression and Classification
- Neural Networks and the Perceptron
 - Neural Networks
 - The Perceptron
 - Implementing Boolean Functions with a Perceptron
- Convex Functions
- Gradient Descent (part 1)

Convex Functions

Organisational Matters

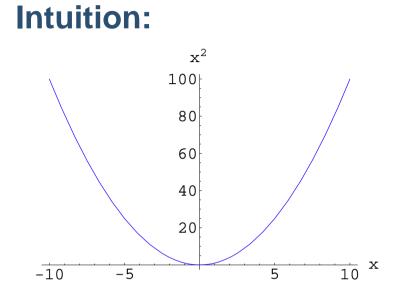


Linear Functions as Inner Products

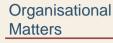
Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions



Convex Functions



Answers Exercises 2

Linear Functions as Inner Products

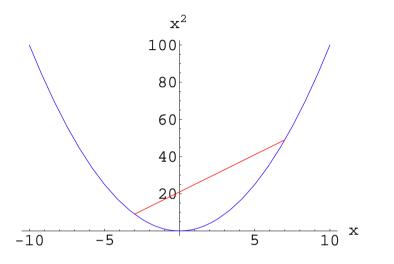
Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

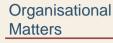
Gradient Descent

Intuition:



• A function is convex if it lies below the line between any two of its points. For example, f(-3) and f(7).

Convex Functions



Answers Exercises 2

Linear Functions as Inner Products

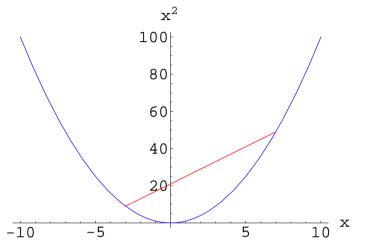
Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

Intuition:

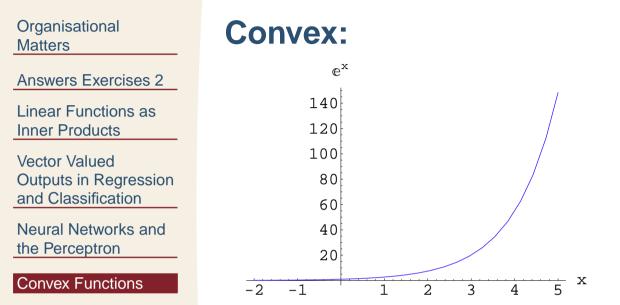


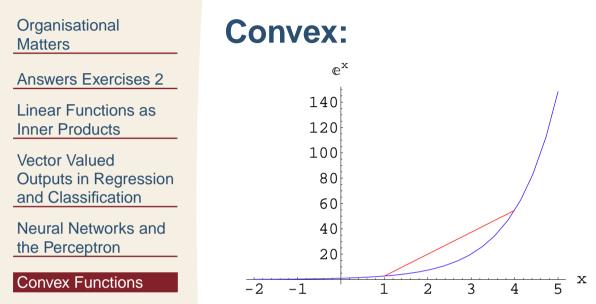
• A function is convex if it lies below the line between any two of its points. For example, f(-3) and f(7).

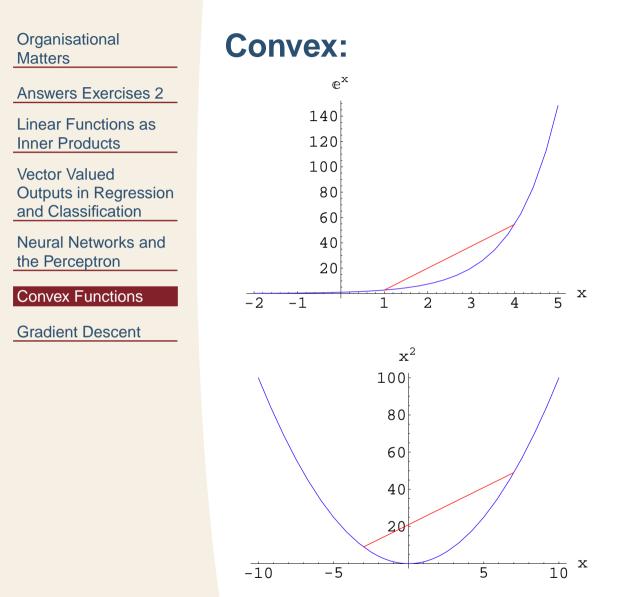
Definition: A function f(x) is **convex** if

 $f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2)$

for any two inputs x_1 , x_2 and any $0 \le \alpha \le 1$.







Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

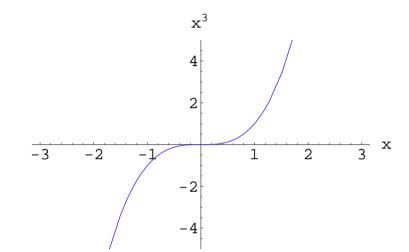
Neural Networks and the Perceptron

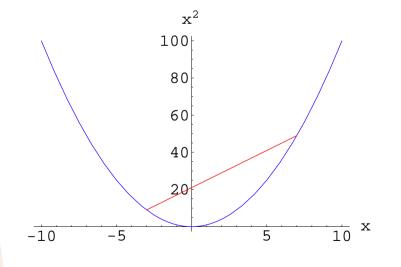
Convex Functions

Gradient Descent

Convex: e^{x} 140 120 100 80 60 40 20 х -2 5 -1 2 3 4 1

Not Convex:





Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

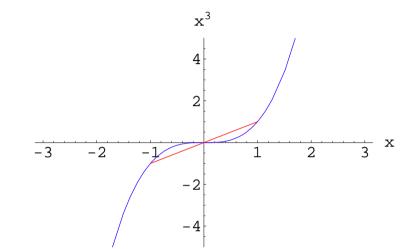
Vector Valued Outputs in Regression and Classification

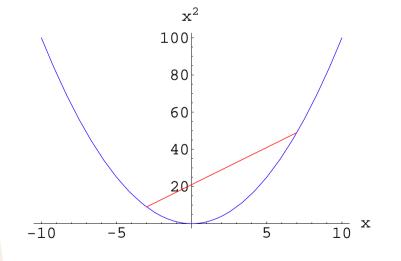
Neural Networks and the Perceptron

Convex Functions

Gradient Descent

Convex: e^{x} 140 120 100 80 60 40 20 х -2 5 -1 2 3 4 1





Organisational **Convex:** Matters e^{x} Answers Exercises 2 140 Linear Functions as 120 Inner Products 100 Vector Valued Outputs in Regression 80 and Classification 60 Neural Networks and 40 the Perceptron 20 **Convex Functions** х -2 5 -1 2 3 4 1 **Gradient Descent** \mathbf{x}^2 100 80 60 40

Not Convex: \mathbf{x}^3 4 2 х -3 3 -2 1 2 -1/ -2 -4 $-\mathbf{x}^2$ х 10 -10 -5 5 -20 -40 -60 20 -80 ____ x -10 -5 5 -100

Organisational **Convex:** Matters e^{x} Answers Exercises 2 140 Linear Functions as 120 Inner Products 100 Vector Valued Outputs in Regression 80 and Classification 60 Neural Networks and 40 the Perceptron 20 **Convex Functions** х -2 5 -1 2 3 4 1 **Gradient Descent** \mathbf{x}^2 100 80 60 40

-10

20

-5

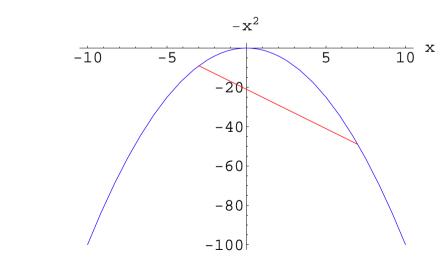
____ x

5

Not Convex:

-2

-4



х

3

Overview

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

- Organisational Matters
- Answers Exercises 2
- Linear Functions as Inner Products
- Vector Valued Outputs in Regression and Classification
- Neural Networks and the Perceptron
 - Neural Networks
 - The Perceptron
 - Implementing Boolean Functions with a Perceptron
- Convex Functions
- Gradient Descent (part 1)

Gradient Descent

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

- Gradient descent is a method to find the minimum $\min_x f(x)$ of a function.
- It works for convex functions.
- But not for some other functions.

Gradient Descent

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

- Gradient descent is a method to find the minimum $\min_x f(x)$ of a function.
- It works for convex functions.
- But not for some other functions.

General Idea:

- 1. Pick a random starting point x_1 .
- 2. Do a little step in the direction of the derivative: $f'(x_1)$.
- 3. Now we are at x_2 .
- 4. Do a little step in the direction of the derivative: $f'(x_2)$.
- 5. Keep doing little steps until $f'(x_m) \approx 0$: we have reached the minimum.

Gradient Descent

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

Gradient Descent

- Gradient descent is a method to find the minimum $\min_x f(x)$ of a function.
- It works for convex functions.
- But not for some other functions.

General Idea:

- 1. Pick a random starting point x_1 .
- 2. Do a little step in the direction of the derivative: $f'(x_1)$.
- 3. Now we are at x_2 .
- 4. Do a little step in the direction of the derivative: $f'(x_2)$.
- 5. Keep doing little steps until $f'(x_m) \approx 0$: we have reached the minimum.

To be continued next lecture...

Overview

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

- Organisational Matters
- Answers Exercises 2
- Linear Functions as Inner Products
- Vector Valued Outputs in Regression and Classification
- Neural Networks and the Perceptron
 - Neural Networks
 - The Perceptron
 - Implementing Boolean Functions with a Perceptron
- Convex Functions
- Gradient Descent (part 1)

References

Organisational Matters

Answers Exercises 2

Linear Functions as Inner Products

Vector Valued Outputs in Regression and Classification

Neural Networks and the Perceptron

Convex Functions

- Picture of a neuron taken from Wikimedia Commons, http://commons.wikimedia.org/wiki/Image:Neuron.svg: Originally
 Neuron.jpg taken from the US Federal (public domain) (Nerve Tissue, retrieved March 2007), redrawn by User:Dhp1080 in Illustrator. Source:
 "Anatomy and Physiology" by the US National Cancer Institute's Surveillance, Epidemiology and End Results (SEER) Program.
- S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004
- T.M. Mitchell, "Machine Learning", McGraw-Hill, 1997