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Machine Learning 2007: Lecture 8

Instructor: Tim van Erven (Tim.van.Erven@cwi.nl)
Website: www.cwi.nl/˜erven/teaching/0708/ml/

October 31, 2007

www.cwi.nl/~erven/teaching/0708/ml/
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● Organisational Matters
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✦ General Neural Networks

● Gradient Descent

✦ Convex Functions
✦ Gradient Descent in One Variable
✦ Gradient Descent in More Variables
✦ Optimizing Perceptron Weights
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Final Exam:

● You have to enroll for the final exam on tisvu (when possible.)
● The final exam will be more difficult than the intermediate

exam.

Mitchell:

● Read: Chapter 4, sections 4.1 – 4.4.
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Final Exam:

● You have to enroll for the final exam on tisvu (when possible.)
● The final exam will be more difficult than the intermediate

exam.

Mitchell:

● Read: Chapter 4, sections 4.1 – 4.4.

This Lecture:

● Explanation of linear functions as inner products is needed to
understand Mitchell.

● Neural networks are in Mitchell. I have some extra pictures.
● Convex functions are not discussed in Mitchell.
● I will give more background on gradient descent.
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Linear Function:

hw(x) = w0 + w1x1 + . . . + wdxd

● x = (x1, . . . , xd)
⊤ is a d-dimensional feature vector.

● w = (w0, w1, . . ., wd)
⊤ is a d + 1-dimensional weight vector.
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Linear Function:

hw(x) = w0 + w1x1 + . . . + wdxd

● x = (x1, . . . , xd)
⊤ is a d-dimensional feature vector.

● w = (w0, w1, . . ., wd)
⊤ is a d + 1-dimensional weight vector.

As an Inner Product (a standard trick):

We may change x into a d + 1-dimensional vector x
′ by adding an

imaginary extra feature x0, which always has value 1:

x = (x1, . . . , xd)
⊤ ⇒ x

′ = (1, x1, . . . , xd)
⊤

hw(x) =
d
∑

i=0

wix
′
i = 〈w,x′〉
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Linear Function:

hw(x) = w0 + w1x1 + . . . + wdxd

● x = (x1, . . . , xd)
⊤ is a d-dimensional feature vector.

● w = (w0, w1, . . ., wd)
⊤ is a d + 1-dimensional weight vector.

As an Inner Product (a standard trick):

We may change x into a d + 1-dimensional vector x
′ by adding an

imaginary extra feature x0, which always has value 1:

x = (x1, . . . , xd)
⊤ ⇒ x

′ = (1, x1, . . . , xd)
⊤

hw(x) =
d
∑

i=0

wix
′
i = 〈w,x′〉

● Mitchell writes w · x′ for 〈w,x′〉.
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● Organisational Matters
● Linear Functions as Inner Products
● Neural Networks
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An Artificial Neuron:

An (artificial) neuron is some function h that gets a feature vector
x as input and outputs a (single) label y.

The Perceptron:

The most famous type of (artificial) neuron is the perceptron:

hw(x) =

{

1 if w0 + w1x1 + . . . wdxd > 0,

−1 otherwise.

● Applies a threshold to a linear function of x.
● Has parameters w.
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Simple Neural Network: Mitchell’s Drawing:

INPUTS
OUTPUT 

NEURONS
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Equation: hw(x) =

{

1 if w0 + w1x1 + . . . wdxd > 0,

−1 otherwise.
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Simple Neural Network: Mitchell’s Drawing:

INPUTS
OUTPUT 

NEURONS

x1

x2

x4

x3

y1

OUTPUTS

Equation: hw(x) =

{

1 if w0 + w1x1 + . . . wdxd > 0,

−1 otherwise.

● One of the most simple neural networks consists of just one
perceptron neuron.

● A perceptron does classification .
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Simple Neural Network: Mitchell’s Drawing:

INPUTS
OUTPUT 

NEURONS

x1

x2

x4

x3

y1

OUTPUTS

Equation: hw(x) =

{

1 if w0 + w1x1 + . . . wdxd > 0,

−1 otherwise.

● One of the most simple neural networks consists of just one
perceptron neuron.

● A perceptron does classification .
● The network has no hidden units, and just one output.
● It may have any number of inputs.
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Decision boundary: w0 + w1x1 + . . . + wdxd = 0

● This is where the perceptron changes its output y from −1 (-)
to +1 (+) if we change x a little bit.

● For d = 2 this decision boundary is always a line.
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Decision boundary: w0 + w1x1 + . . . + wdxd = 0

● This is where the perceptron changes its output y from −1 (-)
to +1 (+) if we change x a little bit.

● For d = 2 this decision boundary is always a line.

Representing Boolean Functions (−1 = false, 1 = true):

AND OR

−3 −2 −1 1 2 3
x1

−3

−2

−1

1

2

3
x2

+−

−−

−3 −2 −1 1 2 3
x1

−3

−2

−1

1

2

3
x2

++

+−

w0 = −0.8, w1 = 0.5, w2 = 0.5 w0 = 0.3, w1 = 0.5, w2 = 0.5
Wrong in Mitchell!
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Exclusive Or:

−3 −2 −1 1 2 3
x1

−3
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−1
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x2

−+

+−

● There exists no line that separates the inputs with label ‘-’
from the inputs with label ‘+’. They are not linearly
separable .
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Exclusive Or:

−3 −2 −1 1 2 3
x1

−3

−2

−1

1

2

3
x2

−+

+−

● There exists no line that separates the inputs with label ‘-’
from the inputs with label ‘+’. They are not linearly
separable .

● The decision boundary for the perceptron is always a line.
● Hence a perceptron can never implement the ‘exclusive or’

function, whichever weights we choose!
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● We can create an (artificial) neural network (NN) by
connecting neurons together.

● We hook up our feature vector x to the input neurons in the
network. We get a label vector y from the output neurons.
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INPUTS
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y3
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OUTPUTS

● We can create an (artificial) neural network (NN) by
connecting neurons together.

● We hook up our feature vector x to the input neurons in the
network. We get a label vector y from the output neurons.

● The parameters of the neural network w consist of all the
parameters of the neurons in the network taken together in
one big vector.
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Sharp
 Left

Sharp
Right

4 Hidden
   Units

30 Output
   Units

 30x32 Sensor
 Input Retina

Straight
 Ahead
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Intuition:
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Intuition:
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● A function is convex if it lies below the line between any two of
its points. For example, f(−3) and f(7).
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Intuition:
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● A function is convex if it lies below the line between any two of
its points. For example, f(−3) and f(7).

Definition: A function f(x) is convex if

f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2)

for any two inputs x1, x2 and any 0 ≤ α ≤ 1.
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● Organisational Matters
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✦ General Neural Networks
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● Gradient descent is a method to find the minimum of a
function: minx f(x).

● It works for convex functions, but not for some other functions.
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● Gradient descent is a method to find the minimum of a
function: minx f(x).

● It works for convex functions, but not for some other functions.

−10 −5 10
x

10

20

30

40

50

f(x)

x1

General Idea:

1. Pick some starting point x1.
2. Keep taking small steps downhill:

f(x1) > f(x2) > f(x3) > . . .

3. Stop at the minimum.
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What is Downhill?

The derivative f ′(x) points uphill, so downhill is −f ′(x).
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What is Downhill?

The derivative f ′(x) points uphill, so downhill is −f ′(x).

Step Size:

● We multiply −f ′(xn) by the learning rate η.
● This controls the size of our steps.
● If η is too big, we will walk past the minimum.
● If η is too small, it will take very long before we get to the

minimum.
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What is Downhill?

The derivative f ′(x) points uphill, so downhill is −f ′(x).

Step Size:

● We multiply −f ′(xn) by the learning rate η.
● This controls the size of our steps.
● If η is too big, we will walk past the minimum.
● If η is too small, it will take very long before we get to the

minimum.
● There exist more advanced methods to choose your step size.
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What is Downhill?

The derivative f ′(x) points uphill, so downhill is −f ′(x).

Step Size:

● We multiply −f ′(xn) by the learning rate η.
● This controls the size of our steps.
● If η is too big, we will walk past the minimum.
● If η is too small, it will take very long before we get to the

minimum.
● There exist more advanced methods to choose your step size.

The Gradient Descent Algorithm:

1. Pick some starting point x1.
2. xn+1 = xn + ∆xn, where ∆xn = −η · f ′(xn).
3. Stop when ∆xn is very small.



What Can Go Wrong?

Organisational
Matters

Linear Functions as
Inner Products

Neural Networks

Gradient Descent

20 / 31

Local minima:

-40 -30 -20 -10 10 20
x
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-100 + 9 x2 + x3 +
x4
��������

40 ● For some starting points,
we may get stuck at a local
minimum (x = 0 in figure).

● Most important problem for
gradient descent.

● Convex functions do not
have local minima!
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Local minima:
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40 ● For some starting points,
we may get stuck at a local
minimum (x = 0 in figure).

● Most important problem for
gradient descent.

● Convex functions do not
have local minima!

No minimum exists:
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● The function may have no
minima at all.

● In that case gradient de-
scent cannot find a mini-
mum (of course).
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One Variable:

● Suppose g(x) is a function in one variable x.
● Then we can take the derivative ∂

∂x
g.

Two Variables:

● But suppose f(x) is a function that takes a 2-dimensional
vector x as input and outputs a scalar.

● Does there exist something like the derivative of f with
respect to x?
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One Variable:

● Suppose g(x) is a function in one variable x.
● Then we can take the derivative ∂

∂x
g.

Two Variables:

● But suppose f(x) is a function that takes a 2-dimensional
vector x as input and outputs a scalar.

● Does there exist something like the derivative of f with
respect to x?

● Yes, it is called the gradient :

Gradient: ∇f =

(

∂
∂x1

f

∂
∂x2

f

)

Example: ∇x2
1x2 + x2 =

(

2x1x2

x2
1 + 1

)

● Note that ∇f is a function that takes x as input (like f ), but
outputs a vector!



The Gradient in d Variables

Organisational
Matters

Linear Functions as
Inner Products

Neural Networks

Gradient Descent

23 / 31

Definition:

Suppose f is a function that takes an d-dimensional vector x as
input and outputs a scalar, then the gradient of f is

∇f =







∂
∂x1

f
...

∂
∂xd

f
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Definition:

Suppose f is a function that takes an d-dimensional vector x as
input and outputs a scalar, then the gradient of f is

∇f =







∂
∂x1

f
...

∂
∂xd

f







● ∇f is a function that takes an d-dimensional vector x as
input, just like f .

● But ∇f also outputs an d-dimensional vector, unlike f .
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Definition:

Suppose f is a function that takes an d-dimensional vector x as
input and outputs a scalar, then the gradient of f is

∇f =







∂
∂x1

f
...

∂
∂xd

f







● ∇f is a function that takes an d-dimensional vector x as
input, just like f .

● But ∇f also outputs an d-dimensional vector, unlike f .
● For d = 1 the gradient is just the derivative.
● The gradient is a generalisation of the derivative to higher

dimensional inputs.
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Examples on 3-dimensional input vector x:

Functions Functions at x = (1, 2, 3)⊤

f ∇f f









1
2
3







 ∇f









1
2
3









x1 + 2x2
2 − x3





1
4x2

−1



 6





1
8
−1





x1x2x
2
3





x2x
2
3

x1x
2
3

2x1x2x3
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18
9
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● We can also use gradient descent to find the minimum of a
function that takes a vector as input: minx f(x).

● It is called gradient descent because it walks in the direction
of minus the gradient.

● It works for convex functions, but not for some other functions.
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What is Downhill?

It can be shown that the gradient ∇f(x) points in the direction of
the steepest ascent at x, and that −∇f(x) points in the direction
of the steepest descent.
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What is Downhill?

It can be shown that the gradient ∇f(x) points in the direction of
the steepest ascent at x, and that −∇f(x) points in the direction
of the steepest descent.

Step Size:

● We multiply −∇f(x) by the learning rate η.
● This controls the size of our steps.
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What is Downhill?

It can be shown that the gradient ∇f(x) points in the direction of
the steepest ascent at x, and that −∇f(x) points in the direction
of the steepest descent.

Step Size:

● We multiply −∇f(x) by the learning rate η.
● This controls the size of our steps.

The Gradient Descent Algorithm:

1. Pick some starting point x1.
2. xn+1 = xn + ∆xn, where ∆xn = −η · ∇f(xn).
3. Stop when ∆xn is a very small vector.
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What is Downhill?

It can be shown that the gradient ∇f(x) points in the direction of
the steepest ascent at x, and that −∇f(x) points in the direction
of the steepest descent.

Step Size:

● We multiply −∇f(x) by the learning rate η.
● This controls the size of our steps.

The Gradient Descent Algorithm:

1. Pick some starting point x1.
2. xn+1 = xn + ∆xn, where ∆xn = −η · ∇f(xn).
3. Stop when ∆xn is a very small vector.

● Do not confuse ∆ (delta) and ∇ (the gradient).
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The idea: Given data D, use gradient descent to find perceptron
weights that minimize the number of wrongly classified training
examples in D.
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The idea: Given data D, use gradient descent to find perceptron
weights that minimize the number of wrongly classified training
examples in D.

A Problem:

● The perceptron applies a threshold to a linear function.
● This threshold makes the derivative/gradient undefined for

some inputs.

Solution:

● Minimize the sum of squared errors on D for the perceptron
without the threshold .

● Note that D is considered fixed: We are minimizing
SSE(w, D) as a function of w.
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The idea: Given data D, use gradient descent to find perceptron
weights that minimize the number of wrongly classified training
examples in D.

A Problem:

● The perceptron applies a threshold to a linear function.
● This threshold makes the derivative/gradient undefined for

some inputs.

Solution:

● Minimize the sum of squared errors on D for the perceptron
without the threshold .

● Note that D is considered fixed: We are minimizing
SSE(w, D) as a function of w.

● The perceptron without the threshold is just a linear function
hw(x) (also called linear unit in NNs).

● This is just linear regression!
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Remarks:

● SSE(w, D) is a convex function of w.
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Remarks:

● SSE(w, D) is a convex function of w.
● To apply gradient descent we need to compute the gradient.
● It will be convenient to minimize 1

2SSE(w, D) instead of
SSE(w, D).
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Remarks:

● SSE(w, D) is a convex function of w.
● To apply gradient descent we need to compute the gradient.
● It will be convenient to minimize 1

2SSE(w, D) instead of
SSE(w, D).

Computing The Gradient:

We can compute the ith component of the gradient as follows
(see Mitchell, Equation 4.6):

∂

∂wi

1

2
SSE(w, D) =

∂

∂wi

1

2

∑

(y,x)⊤∈D

(y − hw(x))2

=
∑

(y,x)⊤∈D

(y − hw(x)) · (−xi)
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● Organisational Matters
● Linear Functions as Inner Products
● Neural Networks

✦ The Perceptron
✦ General Neural Networks

● Gradient Descent

✦ Convex Functions
✦ Gradient Descent in One Variable
✦ Gradient Descent in More Variables
✦ Optimizing Perceptron Weights
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