Machine Learning 2007: Lecture 9

Instructor: Tim van Erven (Tim.van.Erven@-cwi.nl)
Website: www.cwi.nl/"erven/teaching/0708/ml/

November 14, 2007
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Rescheduling

Guest Lecture:

Peter Grunwald will give a special guest lecture about
Minimum Description Length learning on December 5.
This Is an extra lecture to compensate for the lecture we
missed because of my illness.

(There was supposed to be no lecture on December 5,
because | will be away to a conference.)
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Rescheduling

Guest Lecture:

e Peter Grunwald will give a special guest lecture about
Minimum Description Length learning on December 5.

e This is an extra lecture to compensate for the lecture we
missed because of my illness.

e (There was supposed to be no lecture on December 5,
because | will be away to a conference.)

Practical:

e Homework exercises 6 will be the practical.

e Will be intruced next lecture.

e Will be available after the lecture (one week earlier than
scheduled).

e This gives you two weeks to complete them.
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Chapter 8 up to section 8.2 about k-nearest neighbour.
Section 6.9 about naive Bayes.
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This Lecture versus Mitchell

This Lecture:

e Chapter 8 up to section 8.2 about k£-nearest neighbour.
e Section 6.9 about naive Bayes.

WARNING versus Mitchell:

e Although naive Bayes is in the chapter about Bayesian
learning (explained in the next lecture), Mitchell does not
explain how it can be viewed as a Bayesian method, which is
not trivial!

e The way Mitchell presents naive Bayes, it does not look like a
Bayesian method at all.
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Hypothesis Space

e Which hypotheses does nearest neighbour consider?
e To get some insight, consider 1-nearest neighbour.
Yi

e For each training example (X‘
(/

) the picture shows the region

closest to x;.
e Inthis region any new instance will get the label ;.

X2 .

x1
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Different Values of k

Sl Target Function: In regression or classification the target
function is the function that we want to learn.
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Extensi f : . .

e Nl fluctuations in the target function.
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Different Values of k

Target Function: In regression or classification the target
function is the function that we want to learn.

Different Values of k:

Smaller k. more sensitive to noise, more sensitive to local
fluctuations in the target function.

Larger k. less sensitive to noise, less sensitive to local
fluctuations in the target function.
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The Length of a Vector

In two dimensions:

The length ||x|| of a 2-dimensional vector x is defined as

x|l = /2t + 23
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The Length of a Vector

Organisational In two dimensions:

Matters

k-Nearest Neighbour The length ||x|| of a 2-dimensional vector x is defined as
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. . _ 2 2
Inductive Bias HXH = ZCl -+ 332

Extensions of
k-Nearest Neighbour

Example:

Probability Theory
Naive Bayes X2
Problem Estimating 6T
Probabilities 51
Solution: (6 4)
Aeompii 4T ’ Ix|| = /62 + 42 = V52

3+

2 X

1+

i i i i i T
0 1 2 3 4 5 6 X1
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The Length of a Vector

Organisational In two dimensions:

Matters

k-Nearest Neighbour The length ||x|| of a 2-dimensional vector x is defined as

Distance is the

Essential Ingredient
. . _ 2 2
Inductive Bias HXH = 5131 -+ 332

Extensions of
k-Nearest Neighbour

In d dimensions:

Probability Theory

Naive Bayes The length ||x|| of a d-dimensional vector x is defined as
Problem Estimating
Probabilities d
Solution:
Inc()j(lejplgzdence HXH = 1/ <X,X> = E I?
Assumption \ —1
1=
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The Length of a Vector

In two dimensions:

The length ||x|| of a 2-dimensional vector x is defined as

x|l = /2t + 23

In d dimensions:

The length ||x|| of a d-dimensional vector x is defined as

d
Ix[| = v (x,%x) = \ D
i=1

Remark:

e Notice that ||x|| = ||—x]|.
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Euclidean distance

Definition:

For any two vectors a and b, the Euclidean distance d(a,b)
between a and b is defined as

d(a,b) = [[a—b]
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Euclidean distance

Definition:

For any two vectors a and b, the Euclidean distance d(a,b)
between a and b is defined as

d(a,b) = [[a—b]

e Notice that d(a,b) = d(b, a).
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Euclidean distance

Organisational Defl n |t|0n :

Matters

k-Nearest Neighbour For any two vectors a and b, the Euclidean distance d(a,b)

Distance is the between a and b is defined as

Essential Ingredient

Inductive Bias

d(a,b) = |la—b]

Extensions of
k-Nearest Neighbour

Probability Theory

e Notice that d(a,b) = d(b, a).

Naive Bayes

Problem Estimati .

Probabilties Example:

Solution:

Inc()j(lejggzdence 10 7 3

Assumption a— 3 , b — O —_— Ha — bH — 3 = 82
—9 —1 —8

Remark: It is possible to use k-nearest neighbour with other
distance measures.
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Difference Has to Make Sense

Sy o Difference makes no sense:
k-Nearest Neighbour Attribute 1 5,

PEEBETE Values Green Red Blue | Circle Square Triangle
. Encoding 1 2 3 1 2 3

Inductive Bias

Extensions of e Suppose x and x’ are both 2-dimensional vectors with these

k-Nearest Neighbour / ]
} features, then d(x, x’) has no meaning.
Probability Theory
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Probabilities

Solution:
Independence
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Difference Has to Make Sense

Difference makes no sense:

Attribute

X1 )
Values Green Red Blue | Circle Square Triangle
Encoding 1 2 3 1 2 3

e Suppose x and x’ are both 2-dimensional vectors with these

features, then d(x, x’) has no meaning.

Difference makes sense:

Attribute

1 i)
Values Green Red Blue | Circle Square Triangle
1 0 0 1 0 0
Encoding 0 1 0 0 1 0
0 0 1 0 0 1

e Now d(x,x’)? (note the square) is twice the number of

different attributes in x and x’.1

!See also slides 15 and 16 of the third lecture.
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Sensitivity to Scaling

SO Scaling attributes changes their importance:

Matters

CerEst et ooy e Suppose we measure an attribute in a larger unit (for example

saontial maredient meters instead of cm.). This scales down one of the axes.
e Then this attribute will become much less important!

Inductive Bias

Extensions of
k-Nearest Neighbour
Probability Theory ® ®
Naive Bayes . ‘ ’ .‘
Problem Estimating X2 ® — X2 @
Probabilities
® ®

Solution: ‘ ‘ ‘.
Independence
Assumption ‘ ‘

x1 x1
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Sensitivity to Scaling

Scaling attributes changes their importance:

e Suppose we measure an attribute in a larger unit (for example
meters instead of cm.). This scales down one of the axes.
e Then this attribute will become much less important!

@ o
® °o® 0’
X2 @ — X2 O
® ® o®
o ® Q‘
x1 x1

Scaling parameters: A scaling parameter may be introduced
for each attribute to control its relative importance.
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Curse of Dimensionality

The curse of dimensionality:

Suppose we add many irrelevant attributes, then their differences
will start to dominate the distance between the examples.

Example:

e Suppose we use 20 features, but only the features x> and x¢
provide useful information.

e Then the distance between feature vectors will be dominated
by the other 18 features, and hence be meaningless.

e Therefore k-nearest neighbour will not work well.
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Summary of Inductive Bias
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Summary of Inductive Bias

Slowly Changing Target Function:

e k-Nearest neighbour assumes that the target function will not
vary too much locally.
e Its notion of ‘local’ depends on the distance measure d.

Small £ (e.g. k£ = 1):

e Assumes there is little noise Iin the training data, because it is
very sensitive to only one single outcome deviating from all
the others near it.

e Sensitive to small-scale fluctuations in the target function.

Large k:

e Less sensitive to noise.
e Needs more data before it learns small-scale fluctuations in
the target function.
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Setance e e
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Extensions of X1 X
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Probability Th ' . .
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Distance Weighted k-Nearest Neighbour

SO ldea: Give lower weight to the vote of neighbours that are further
k-Nearest Neighbour away'
Setance e e
EISZZEESI IIsngr(;dient Defl n |t|0n ’
et o e Suppose (y1> (y’“> are the k closest neighbours of a
Extensions of X1 X
new instance x
Probability Th ' . .
o o Letws, ..., wy be their weights.
Naive Bayes .
e o Then the total vote v(y) for label y is > ;) _ 1 wi.
roblem Estimating ) ) . L .
Probabilities e And x is assigned the label that receives the most weighted
Solution: .
In%gggﬂ e votes: arg max, (y).
Assumption

Remarks:

e Ifw; =1, then this is ordinary nearest neighbour.
e If we want to give a lower weight to more distant neighbours,
then we might for example use: w; = 1/d(x, 2;)*.
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k-Nearest Neighbour for Regression

ldea: Average the labels of the k nearest neighbours, possibly
using a weighted average.

Definition:
e Suppose ()y(l> (i"“) are the k closest neighbours of a
1 k
new instance x.
e Letw, ..., wy, denote their weights such that 2% w; = 1.

e Then x is assigned the label y = Zle W;Y;
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k-Nearest Neighbour for Regression

SO ldea: Average the labels of the k£ nearest neighbours, possibly
- using a weighted average.
etaes L
EISZZEESI IIsngr(;dient Defl n |t|0n '
E— e Suppose (y1> (y’“> are the k closest neighbours of a
Extensions of X1 X
new instance x
Probability Th ' . .
= e Letwi,..., w denote their weights such that 3> w; = 1.

Naive Bayes

e Then x is assigned the label y = Zle W;Y;

Problem Estimating
Probabilities

Solution: Remarks:
e e The unweighted average corresponds to w; = 1/k.
o If we have weights that do not sum up to one, then we can
normalise them such that they do: v} = =

Zj:l w] .
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Bayes’ Rule

P(B| A)P(A) = P(ANB) = P(A | B)P(B)

P(B|A)=

For any two events A, B C ()

Rewriting gives Bayes’ rule :

P(A| B)P(B)

P(A)
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Bayes’ Rule

Organisational For any fwo events A, B C Q)

Matters

k-Nearest Neighbour

Distance is the P(B | A)P(A) — P(A A B) — P(A ‘ B)P(B)
Essential Ingredient

Inductive Bias Rewriting gives Bayes’ rule :

Extensions of

k-Nearest Neighbour P(A| B P(B

Probability Theory P(B ‘ A) — ( ’ ) ( )

Probability Theory P(A)

Naive Bayes

Problem Estimating . ... ‘-
Probabilies o Bayes'rule is a consequence of the definition of (conditional)
Solution: th

independence probability. | | | |

= i e You can always apply it, even if you are not doing Bayesian

statistics (which will be introduced next week)!
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Independent Events

ldea: An event A is independent of an event B if the probability

of A doesn’t change when we condition on B:

P(A| B) = P(A).
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Independent Events

organisational ldea: An event A is independent of an event B if the probability

Matters

V- of A doesn’t change when we condition on B:

Distance is the

Essential Ingredient P(A ‘ B) p— P(A) .
Inductive Bias
Extensions of Independent Events:

k-Nearest Neighbour

e P(A|B)=P(ANB)/P(B) is undefined if P(B) = 0.

Naive Bayes e Therefore we use the following formal definition: Two events
Pl Bl A, B C Q) are independent if

independence P(AN B) = P(A)P(B).

Assumption
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Independent Events

ldea: An event A is independent of an event B if the probability
of A doesn’t change when we condition on B:

P(A| B) = P(A).

Independent Events:

e P(A|B)=P(ANB)/P(B)isundefinedif P(B) = 0.
e Therefore we use the following formal definition: Two events
A, B C () are independent if

P(AN B) = P(A)P(B).

Conditionally Independent Events:  Two events A, B C
are independent conditional on event C' C Q if

P(ANB|C)=P(A|C)P(B|O).
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Independent Events Example

Organisational e Suppose we draw two cards from a deck (52 cards) without
replacement.

Stance i the e Let 2 be the sample space consisting of all possible pairs of

Essential Ingredient two Cards.

Inductive Bias e Let P be the uniform distribution on €2, which assigns the

Extensions of

k-Nearest Neighbour same probability to each element w € ().

Naive Bayes

k-Nearest Neighbour

Problem Estimating
Probabilities

Solution:
Independence
Assumption
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Independent Events Example

e Suppose we draw two cards from a deck (52 cards) without
replacement.

e Let () be the sample space consisting of all possible pairs of
two cards.

e Let P be the uniform distribution on €2, which assigns the
same probability to each element w € ().

e Let X and Y be random variables that denote the kind
(clubs=1, spades=2, hearts=3 or diamonds=4) of the first and
the second card, respectively.

1 . 1 13 12
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Random Vectors

O isational 1Nt .

eeationa Definition:

kNearest Neighbour A ¢-dimensional random vector is a function from the sample
Dist is th d : :

Eeoontial Inpradient space () to R¢, the set of all d-dimensional vectors.

Inductive Bias Example:

Extensions of

k-Nearest Neighbour Suppose we have random variables X, Xo, ..., X4, then we can

construct the following d-dimensional random vector:
Naive Bayes
Problem Estimating (Xl (w)\
Probabilities
Solution: X2 (w)
Independence X(w) — .
Assumption :
\X a(w ))
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Oreanisational . _
GO Naive Bayes:

k-Nearest Neighbour e Naive Bayes is a method for classification.

Distance is the e It assumes that the outcomes (y,x)' € ) that we get are
ssential Ingredient ] ) . . . .

ustive Bia distributed according to some unknown distribution P.
S e It makes certain independence assumptions that make it
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easier to estimate P.
Probability Theory

Problem Estimating
Probabilities

Solution:
Independence
Assumption

26 /34



Organisational
Matters

k-Nearest Neighbour

Distance is the
Essential Ingredient

Inductive Bias

Extensions of
k-Nearest Neighbour

Probability Theory

Problem Estimating
Probabilities

Solution:
Independence
Assumption

Overview

Naive Bayes:

e Naive Bayes is a method for classification.

e It assumes that the outcomes (y,x)' € ) that we get are
distributed according to some unknown distribution P.

e It makes certain independence assumptions that make it
easier to estimate P.

Classification:

Suppose we want to classify feature vector x.
e Then select the label y with highest conditional probability:

argmax, P(Y =y | X = x).

e We will use training data to estimate P(Y =y | X = x).
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Problem Estimating Conditional Probabilities

Huge number of possible feature vectors:

e Letx be a d-dimensional feature vector.

e The size of X, the set of possible x, grows exponentially in d.
(For example, |X| = 2¢ if each component of x can take two
possible values.)

e We are interested in cases where d Is very large. Hence also
X Is very large.
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Problem Estimating Conditional Probabilities

Huge number of possible feature vectors:

Let x be a d-dimensional feature vector.

The size of X, the set of possible x, grows exponentially in d.
(For example, |X| = 2¢ if each component of x can take two
possible values.)

We are interested in cases where d Is very large. Hence also
X Is very large.

Cannot estimate conditional probability directly:

We want to estimate P(Y =y | X = x) for some x.

But because X is so big, the feature vector x that we are
Interested in (almost) never occurs in our training data.
Therefore we cannot estimate P(Y =y | X = x) directly
using relative frequencies of y and x.
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Solution Estimating Conditional Probabilities

1. Apply Bayes’ rule :

argmax, P(Y =y | X = x)

PX =x|Y =y)P(Y =y)
Y P(X =x)
= argmax, P(X =x|Y =y)P(Y =y)

= arg max

2. Assume that the components of x are conditionally
independent given the class label :

d
PX=x|Y=y) =]][PXi=zi|Y =y
1=1

e Now we can estimate P(X; = x; | Y = y) independently for
each component of x, which is much easier.
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Naive Bayes Example

rganisational i .
Sl Fairy tale data set:
k-Nearest Neighbour T Xo xr3 Y
Distance is the WearsBlack SavesPrincess HorseColour | GoodOrEuvil
i gredient
Inductive Bias No Yes Black Good
Extensions of YeS NO BIaCk EV|I
k-Nearest Neighbour NO NO Wh |te GOOd
Probability Theory YeS YeS B rown G OOd
Naive Bayes
Problem Estimating Classifying a new instance:
Probabilities
aﬂggggaence No 3 2 2 1
Assumption P(Y — GOOd)P X = Yes ‘ Y = Good — 1 . § . § . g
White
No 1
>P(Y=EvilP|X=[ Yes | |[Y =Evil|=--0-0-0
. 4
White
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But it works anyway:
According to [Domingos and Pazzani, 1996].

e Evenif P(y | x) is not estimated correctly;
o Often argmax, P(y | x) is still correct.
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