Machine Learning 2007: Lecture 9

Instructor: Tim van Erven (Tim.van.Erven@cwi.nl) Website: www.cwi.nl/~erven/teaching/0708/ml/ November 14, 2007

1 / 34

Overview

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Organisational Matters

- k-Nearest Neighbour
 - Distance is the Essential Ingredient
 - Inductive Bias
 - Extensions of k-Nearest Neighbour
- Probability Theory
- Naive Bayes
 - Problem Estimating Probabilities
 - Solution: Independence Assumption

Rescheduling

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Guest Lecture:

- Peter Grünwald will give a special **guest lecture** about Minimum Description Length learning on December 5.
- This is an extra lecture to compensate for the lecture we missed because of my illness.
- (There was supposed to be no lecture on December 5, because I will be away to a conference.)

Rescheduling

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Guest Lecture:

- Peter Grünwald will give a special **guest lecture** about Minimum Description Length learning on December 5.
- This is an extra lecture to compensate for the lecture we missed because of my illness.
- (There was supposed to be no lecture on December 5, because I will be away to a conference.)

Practical:

- Homework exercises 6 will be the practical.
- Will be intruced next lecture.
- Will be available after the lecture (one week earlier than scheduled).
- This gives you two weeks to complete them.

This Lecture versus Mitchell

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

This Lecture:

- Chapter 8 up to section 8.2 about *k*-nearest neighbour.
- Section 6.9 about naive Bayes.

This Lecture versus Mitchell

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

- Extensions of k-Nearest Neighbour
- Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

This Lecture:

- Chapter 8 up to section 8.2 about *k*-nearest neighbour.
- Section 6.9 about naive Bayes.

WARNING versus Mitchell:

- Although naive Bayes is in the chapter about Bayesian learning (explained in the next lecture), Mitchell does not explain how it can be viewed as a Bayesian method, which is not trivial!
- The way Mitchell presents naive Bayes, it does not look like a Bayesian method at all.

Overview

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Organisational Matters

- k-Nearest Neighbour
 - Distance is the Essential Ingredient
 - Inductive Bias
 - Extensions of k-Nearest Neighbour
 - Probability Theory
 - Naive Bayes
 - Problem Estimating Probabilities
 - Solution: Independence Assumption

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Description:

Given train set D, k-nearest neighbour classifies a new vector \mathbf{x} by voting among the k examples in D that are closest to \mathbf{x} .

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of *k*-Nearest Neighbour

Probability Theory

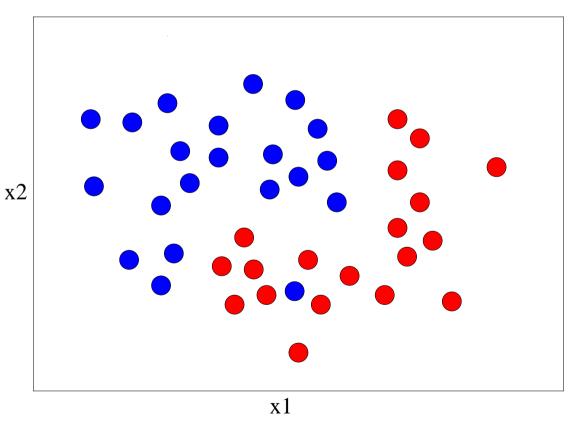
Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Description:

Given train set D, k-nearest neighbour classifies a new vector \mathbf{x} by voting among the k examples in D that are closest to \mathbf{x} .



Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of *k*-Nearest Neighbour

Probability Theory

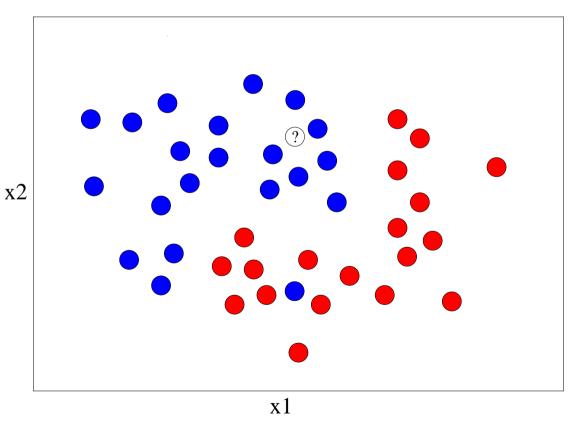
Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Description:

Given train set D, k-nearest neighbour classifies a new vector \mathbf{x} by voting among the k examples in D that are closest to \mathbf{x} .



Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

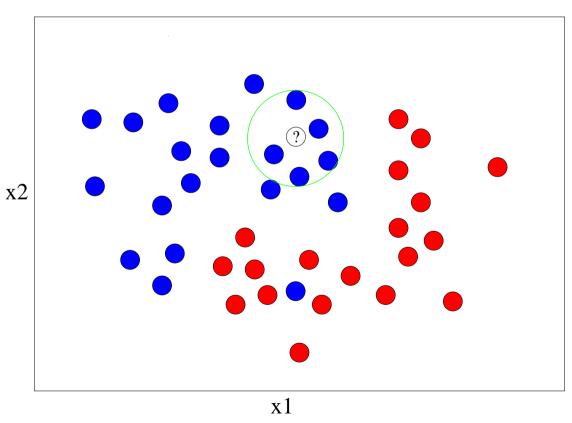
Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Description:

Given train set D, k-nearest neighbour classifies a new vector \mathbf{x} by voting among the k examples in D that are closest to \mathbf{x} .



Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

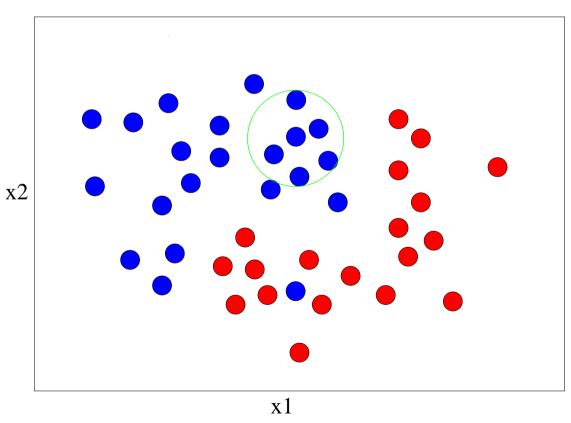
Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Description:

Given train set D, k-nearest neighbour classifies a new vector \mathbf{x} by voting among the k examples in D that are closest to \mathbf{x} .



Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

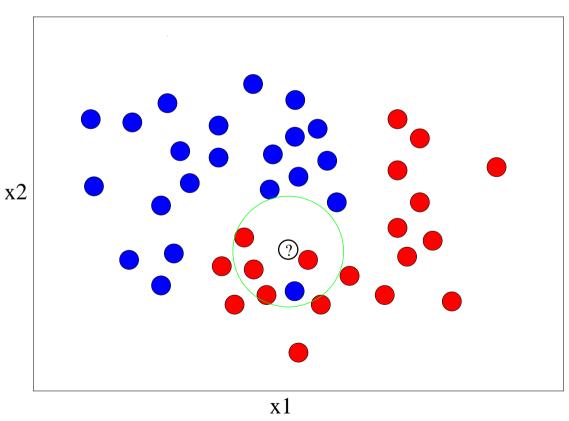
Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Description:

Given train set D, k-nearest neighbour classifies a new vector \mathbf{x} by voting among the k examples in D that are closest to \mathbf{x} .



Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

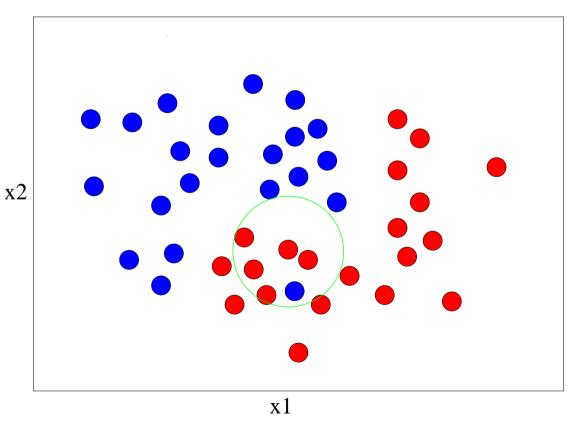
Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Description:

Given train set D, k-nearest neighbour classifies a new vector \mathbf{x} by voting among the k examples in D that are closest to \mathbf{x} .



Hypothesis Space

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption Which hypotheses does nearest neighbour consider?

Hypothesis Space

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of *k*-Nearest Neighbour

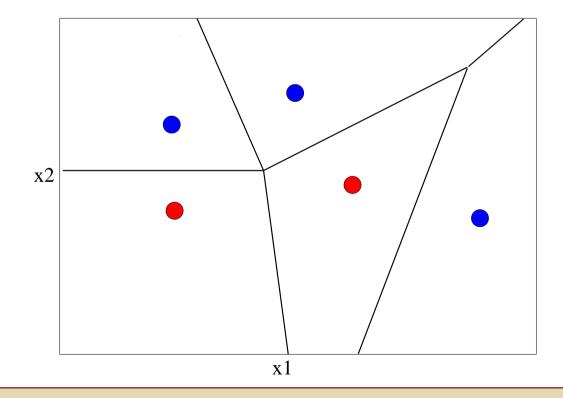
Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

- Which hypotheses does nearest neighbour consider?
- To get some insight, consider 1-nearest neighbour.
- For each training example $\begin{pmatrix} y_i \\ \mathbf{x}_i \end{pmatrix}$ the picture shows the region closest to \mathbf{x}_i .
- In this region any new instance will get the label y_i .



Different Values of k

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption **Target Function:** In regression or classification the target function is the function that we want to learn.

Different Values of k

Organisational Matters

k-Nearest Neighbour

Distance	is the
Essential	Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

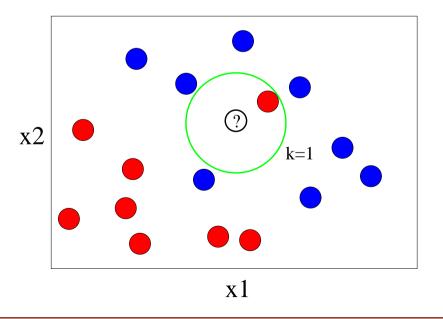
Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption **Target Function:** In regression or classification the target function is the function that we want to learn.

Different Values of k:

- Smaller k: more sensitive to noise, more sensitive to local fluctuations in the target function.
- Larger k: less sensitive to noise, less sensitive to local fluctuations in the target function.



Different Values of k

Organisational Matters

k-Nearest Neighbour

Distance	is the
Essential	Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

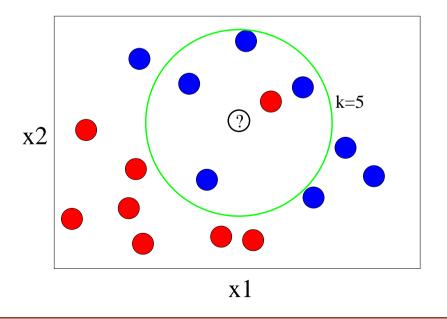
Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption **Target Function:** In regression or classification the target function is the function that we want to learn.

Different Values of k:

- Smaller k: more sensitive to noise, more sensitive to local fluctuations in the target function.
- Larger k: less sensitive to noise, less sensitive to local fluctuations in the target function.



Overview

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Organisational Matters

- k-Nearest Neighbour
 - Distance is the Essential Ingredient
 - Inductive Bias
 - Extensions of k-Nearest Neighbour
- Probability Theory
- Naive Bayes
 - Problem Estimating Probabilities
 - Solution: Independence Assumption

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

In two dimensions:

The length $\|\mathbf{x}\|$ of a 2-dimensional vector \mathbf{x} is defined as

 $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2}$

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

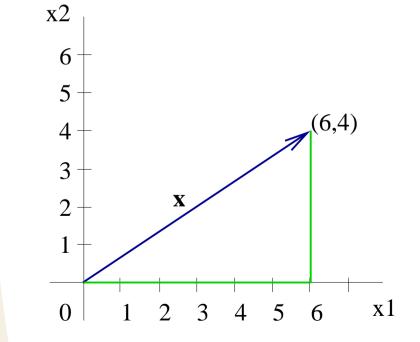
Solution: Independence Assumption

In two dimensions:

The length $\|\mathbf{x}\|$ of a 2-dimensional vector \mathbf{x} is defined as

$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2}$$

Example:



$$\|\mathbf{x}\| = \sqrt{6^2 + 4^2} = \sqrt{52}$$

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

In two dimensions:

The length $\|\mathbf{x}\|$ of a 2-dimensional vector \mathbf{x} is defined as

 $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2}$

In *d* dimensions:

The length $||\mathbf{x}||$ of a *d*-dimensional vector \mathbf{x} is defined as

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\sum_{i=1}^{d} x_i^2}$$

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

In two dimensions:

The length $\|\mathbf{x}\|$ of a 2-dimensional vector \mathbf{x} is defined as

 $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2}$

In *d* dimensions:

The length $||\mathbf{x}||$ of a *d*-dimensional vector \mathbf{x} is defined as

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\sum_{i=1}^{d} x_i^2}$$

Remark:

• Notice that $\|\mathbf{x}\| = \|-\mathbf{x}\|$.

Euclidean distance

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Definition:

For any two vectors \mathbf{a} and \mathbf{b} , the **Euclidean distance** $d(\mathbf{a}, \mathbf{b})$ between \mathbf{a} and \mathbf{b} is defined as

 $d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|$

Euclidean distance

Definition:

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption For any two vectors \mathbf{a} and \mathbf{b} , the Euclidean distance $d(\mathbf{a}, \mathbf{b})$ between \mathbf{a} and \mathbf{b} is defined as

 $d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|$

• Notice that $d(\mathbf{a}, \mathbf{b}) = d(\mathbf{b}, \mathbf{a})$.

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of *k*-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Definition:

For any two vectors \mathbf{a} and \mathbf{b} , the **Euclidean distance** $d(\mathbf{a}, \mathbf{b})$ between \mathbf{a} and \mathbf{b} is defined as

 $d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|$

Notice that $d(\mathbf{a}, \mathbf{b}) = d(\mathbf{b}, \mathbf{a})$.

Example:

$$\mathbf{a} = \begin{pmatrix} 10\\3\\-9 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 7\\0\\-1 \end{pmatrix} \quad \Rightarrow \quad \|\mathbf{a} - \mathbf{b}\| = \left\| \begin{pmatrix} 3\\3\\-8 \end{pmatrix} \right\| = \sqrt{82}$$

Remark: It is possible to use *k*-nearest neighbour with other distance measures.

Difference Has to Make Sense

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Difference makes no sense:

Attribute		x_1			x_2	
Values	Green	Red	Blue	Circle	Square	Triangle
Encoding	1	2	3	1	2	3

Suppose \mathbf{x} and \mathbf{x}' are both 2-dimensional vectors with these features, then $d(\mathbf{x}, \mathbf{x}')$ has no meaning.

Difference Has to Make Sense

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

```
Naive Bayes
```

Problem Estimating Probabilities

Solution: Independence Assumption

Difference makes no sense:

Attribute		x_1			x_2	
Values	Green	Red	Blue	Circle	Square	Triangle
Encoding	1	2	3	1	2	3

Suppose \mathbf{x} and \mathbf{x}' are both 2-dimensional vectors with these features, then $d(\mathbf{x}, \mathbf{x}')$ has no meaning.

Difference makes sense:

Attribute Values	Croop	x_1 Red	Blue	Cirolo	x_2	Trionglo
values	Green	Reu	Diue		Square	Triangle
Encoding	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	$\begin{pmatrix} 0\\1\\0 \end{pmatrix}$	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	$\begin{pmatrix} 0\\1\\0 \end{pmatrix}$	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$

• Now $d(\mathbf{x}, \mathbf{x}')^2$ (note the square) is twice the number of different attributes in \mathbf{x} and \mathbf{x}' .¹

¹See also slides 15 and 16 of the third lecture.

Sensitivity to Scaling

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of *k*-Nearest Neighbour

Probability Theory

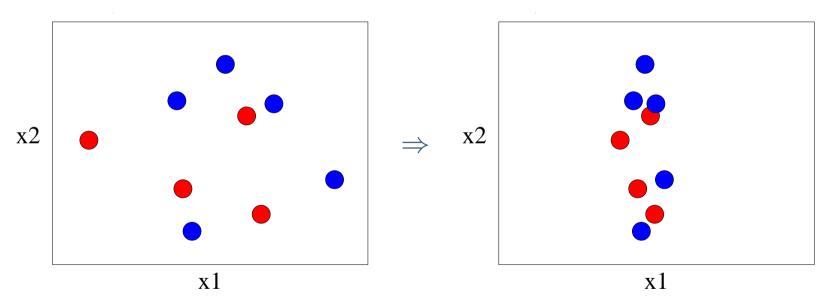
Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Scaling attributes changes their importance:

Suppose we measure an attribute in a larger unit (for example meters instead of cm.). This scales down one of the axes.
Then this attribute will become much less important!



Sensitivity to Scaling

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of *k*-Nearest Neighbour

Probability Theory

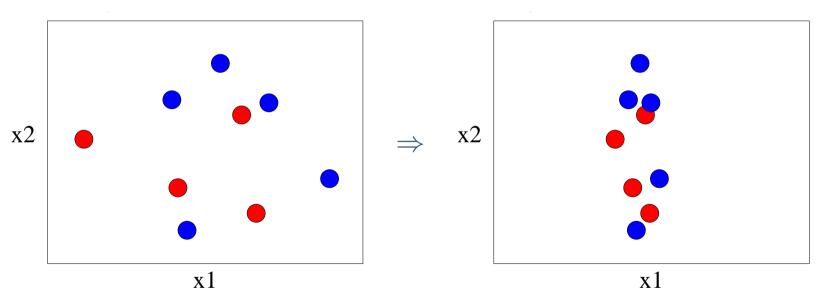
Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Scaling attributes changes their importance:

Suppose we measure an attribute in a larger unit (for example meters instead of cm.). This scales down one of the axes.
 Then this attribute will become much less important!



Scaling parameters: A scaling parameter may be introduced for each attribute to control its relative importance.

Curse of Dimensionality

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

The curse of dimensionality:

Suppose we add many irrelevant attributes, then their differences will start to dominate the distance between the examples.

Example:

- Suppose we use 20 features, but only the features x_2 and x_6 provide useful information.
- Then the distance between feature vectors will be dominated by the other 18 features, and hence be meaningless.

Therefore *k*-nearest neighbour will not work well.

Overview

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Organisational Matters

- k-Nearest Neighbour
 - Distance is the Essential Ingredient
 - Inductive Bias
 - Extensions of k-Nearest Neighbour
- Probability Theory
- Naive Bayes
 - Problem Estimating Probabilities
 - Solution: Independence Assumption

Summary of Inductive Bias

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of *k*-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Slowly Changing Target Function:

- k-Nearest neighbour assumes that the target function will not vary too much locally.
- Its notion of 'local' depends on the distance measure d.

Summary of Inductive Bias

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of *k*-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Slowly Changing Target Function:

- k-Nearest neighbour assumes that the target function will not vary too much locally.
- Its notion of 'local' depends on the distance measure d.

Small k (e.g. k = 1):

- Assumes there is little noise in the training data, because it is very sensitive to only one single outcome deviating from all the others near it.
- Sensitive to small-scale fluctuations in the target function.

Large k:

- Less sensitive to noise.
- Needs more data before it learns small-scale fluctuations in the target function.

Overview

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Organisational Matters

- k-Nearest Neighbour
 - Distance is the Essential Ingredient
 - Inductive Bias
 - Extensions of k-Nearest Neighbour
- Probability Theory
- Naive Bayes
 - Problem Estimating Probabilities
 - Solution: Independence Assumption

Distance Weighted *k***-Nearest Neighbour**

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption **Idea:** Give lower weight to the vote of neighbours that are further away.

Distance Weighted *k***-Nearest Neighbour**

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption **Idea:** Give lower weight to the vote of neighbours that are further away.

Definition:

Suppose $\begin{pmatrix} y_1 \\ \mathbf{x}_1 \end{pmatrix}$, ..., $\begin{pmatrix} y_k \\ \mathbf{x}_k \end{pmatrix}$ are the *k* closest neighbours of a new instance \mathbf{x} .

- Let w_1, \ldots, w_k be their weights.
- Then the total vote v(y) for label y is $\sum_{\{i|y_i=y\}} w_i$.
- And x is assigned the label that receives the most weighted votes: $\arg \max_y v(y)$.

Distance Weighted *k***-Nearest Neighbour**

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption **Idea:** Give lower weight to the vote of neighbours that are further away.

Definition:

Suppose $\begin{pmatrix} y_1 \\ \mathbf{x}_1 \end{pmatrix}$, ..., $\begin{pmatrix} y_k \\ \mathbf{x}_k \end{pmatrix}$ are the *k* closest neighbours of a new instance \mathbf{x} .

- Let w_1, \ldots, w_k be their weights.
- Then the total vote v(y) for label y is $\sum_{\{i|y_i=y\}} w_i$.
- And x is assigned the label that receives the most weighted votes: $\arg \max_y v(y)$.

Remarks:

- If $w_i = 1$, then this is ordinary nearest neighbour.
- If we want to give a lower weight to more distant neighbours, then we might for example use: $w_i = 1/d(x, x_i)^2$.

k-Nearest Neighbour for Regression

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption **Idea:** Average the labels of the k nearest neighbours, possibly using a weighted average.

k-Nearest Neighbour for Regression

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption **Idea:** Average the labels of the *k* nearest neighbours, possibly using a weighted average.

Definition:

Suppose $\begin{pmatrix} y_1 \\ \mathbf{x}_1 \end{pmatrix}$, ..., $\begin{pmatrix} y_k \\ \mathbf{x}_k \end{pmatrix}$ are the *k* closest neighbours of a new instance \mathbf{x} .

- Let w_1, \ldots, w_k denote their weights such that $\sum_{i=1}^k w_i = 1$.
- Then x is assigned the label $y = \sum_{i=1}^{k} w_i y_i$

k-Nearest Neighbour for Regression

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption **Idea:** Average the labels of the k nearest neighbours, possibly using a weighted average.

Definition:

Suppose $\begin{pmatrix} y_1 \\ \mathbf{x}_1 \end{pmatrix}$, ..., $\begin{pmatrix} y_k \\ \mathbf{x}_k \end{pmatrix}$ are the *k* closest neighbours of a new instance \mathbf{x} .

- Let w_1, \ldots, w_k denote their weights such that $\sum_{i=1}^k w_i = 1$.
- Then x is assigned the label $y = \sum_{i=1}^{k} w_i y_i$

Remarks:

- The unweighted average corresponds to $w_i = 1/k$.
- If we have weights that do not sum up to one, then we can **normalise** them such that they do: $w'_i = \frac{w_i}{\sum_{j=1}^k w_j}$.

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Organisational Matters

- k-Nearest Neighbour
 - Distance is the Essential Ingredient
 - Inductive Bias
 - Extensions of k-Nearest Neighbour
- Probability Theory
- Naive Bayes
 - Problem Estimating Probabilities
 - Solution: Independence Assumption

Bayes' Rule

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption For any two events $A, B \subseteq \Omega$

$$P(B \mid A)P(A) = P(A \cap B) = P(A \mid B)P(B)$$

Rewriting gives **Bayes' rule**:

 $P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$

Bayes' Rule

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption For any two events $A, B \subseteq \Omega$

$$P(B \mid A)P(A) = P(A \cap B) = P(A \mid B)P(B)$$

Rewriting gives **Bayes' rule**:

 $P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$

- Bayes' rule is a consequence of the definition of (conditional) probability.
- You can **always** apply it, even if you are not doing Bayesian statistics (which will be introduced next week)!

Independent Events

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption **Idea:** An event A is independent of an event B if the probability of A doesn't change when we condition on B:

 $P(A \mid B) = P(A).$

Independent Events

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption **Idea:** An event A is independent of an event B if the probability of A doesn't change when we condition on B:

 $P(A \mid B) = P(A).$

Independent Events:

- $P(A \mid B) = P(A \cap B)/P(B)$ is undefined if P(B) = 0.
- Therefore we use the following formal definition: Two events $A, B \subseteq \Omega$ are **independent** if

 $P(A \cap B) = P(A)P(B).$

Independent Events

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption **Idea:** An event A is independent of an event B if the probability of A doesn't change when we condition on B:

 $P(A \mid B) = P(A).$

Independent Events:

- $P(A \mid B) = P(A \cap B)/P(B)$ is undefined if P(B) = 0.
 - Therefore we use the following formal definition: Two events $A, B \subseteq \Omega$ are **independent** if

 $P(A \cap B) = P(A)P(B).$

Conditionally Independent Events: Two events $A, B \subseteq \Omega$ are independent conditional on event $C \subseteq \Omega$ if

 $P(A \cap B \mid C) = P(A \mid C)P(B \mid C).$

Independent Events Example

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of *k*-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

- Suppose we draw two cards from a deck (52 cards) without replacement.
- Let Ω be the sample space consisting of all possible pairs of two cards.
- Let *P* be the uniform distribution on Ω , which assigns the same probability to each element $\omega \in \Omega$.

Independent Events Example

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

- Suppose we draw two cards from a deck (52 cards) without replacement.
- Let Ω be the sample space consisting of all possible pairs of two cards.
- Let *P* be the uniform distribution on Ω , which assigns the same probability to each element $\omega \in \Omega$.
 - Let X and Y be random variables that denote the kind (clubs=1, spades=2, hearts=3 or diamonds=4) of the first and the second card, respectively.

$$P(X=3)P(X=Y) = \frac{1}{4} \sum_{i=1}^{4} P(X=Y=i) = \frac{1}{4} \cdot 4 \cdot \frac{13}{52} \cdot \frac{12}{51}$$
$$= P(X=Y \land X=3) = P(X=Y=3) = \frac{13}{52} \cdot \frac{12}{51}$$

Random Vectors

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of *k*-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Definition:

A *d*-dimensional **random vector** is a function from the sample space Ω to \mathbb{R}^d , the set of all *d*-dimensional vectors.

Example:

Suppose we have random variables $X_1, X_2, ..., X_d$, then we can construct the following *d*-dimensional random vector:

$$X(\omega) = \begin{pmatrix} X_1(\omega) \\ X_2(\omega) \\ \vdots \\ X_d(\omega) \end{pmatrix}$$

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Organisational Matters

- k-Nearest Neighbour
 - Distance is the Essential Ingredient
 - Inductive Bias
 - Extensions of k-Nearest Neighbour
- Probability Theory
- Naive Bayes
 - Problem Estimating Probabilities
 - Solution: Independence Assumption

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of *k*-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Naive Bayes:

- Naive Bayes is a method for classification.
- It assumes that the outcomes $(y, \mathbf{x})^{\top} \in \Omega$ that we get are distributed according to some unknown distribution P.
- It makes certain independence assumptions that make it easier to estimate P.

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Naive Bayes:

- Naive Bayes is a method for classification.
- It assumes that the outcomes $(y, \mathbf{x})^{\top} \in \Omega$ that we get are distributed according to some unknown distribution P.
 - It makes certain independence assumptions that make it easier to estimate P.

Classification:

- Suppose we want to classify feature vector x.
- Then select the label y with highest conditional probability:

 $\arg\max_{y} P(Y = y \mid X = \mathbf{x}).$

• We will use training data to estimate $P(Y = y \mid X = \mathbf{x})$.

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Organisational Matters

- k-Nearest Neighbour
 - Distance is the Essential Ingredient
 - Inductive Bias
 - Extensions of k-Nearest Neighbour
- Probability Theory
- Naive Bayes
 - Problem Estimating Probabilities
 - Solution: Independence Assumption

Problem Estimating Conditional Probabilities

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Huge number of possible feature vectors:

- Let \mathbf{x} be a d-dimensional feature vector.
- The size of \mathcal{X} , the set of possible \mathbf{x} , grows exponentially in d. (For example, $|\mathcal{X}| = 2^d$ if each component of \mathbf{x} can take two possible values.)
- We are interested in cases where d is very large. Hence also \mathcal{X} is very large.

Problem Estimating Conditional Probabilities

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Huge number of possible feature vectors:

- Let \mathbf{x} be a d-dimensional feature vector.
- The size of \mathcal{X} , the set of possible \mathbf{x} , grows exponentially in d. (For example, $|\mathcal{X}| = 2^d$ if each component of \mathbf{x} can take two possible values.)
- We are interested in cases where d is very large. Hence also \mathcal{X} is very large.

Cannot estimate conditional probability directly:

• We want to estimate P(Y = y | X = x) for some x.

But because \mathcal{X} is so big, the feature vector \mathbf{x} that we are interested in (almost) never occurs in our training data.

• Therefore we cannot estimate P(Y = y | X = x) directly using relative frequencies of y and x.

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Organisational Matters

- k-Nearest Neighbour
 - Distance is the Essential Ingredient
 - Inductive Bias
 - Extensions of k-Nearest Neighbour
- Probability Theory
- Naive Bayes
 - Problem Estimating Probabilities
 - Solution: Independence Assumption

Solution Estimating Conditional Probabilities

Apply **Bayes' rule**:

Organisational Matters

k-Nearest Neighbour

1.

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

$$\arg \max_{y} P(Y = y \mid X = \mathbf{x})$$

$$= \arg \max_{y} \frac{P(X = \mathbf{x} \mid Y = y)P(Y = y)}{P(X = \mathbf{x})}$$

$$= \arg \max_{y} P(X = \mathbf{x} \mid Y = y)P(Y = y)$$

2. Assume that the components of x are **conditionally independent** given the class label y:

$$P(X = \mathbf{x} \mid Y = y) = \prod_{i=1}^{d} P(X_i = x_i \mid Y = y)$$

Now we can estimate $P(X_i = x_i | Y = y)$ independently for each component of **x**, which is much easier.

Naive Bayes Example

Organisational Matters

Distance is the Essential Ingredient

Inductive Bias

Extensions of

Naive Bayes

Probabilities

Independence Assumption

Solution:

k-Nearest Neighbou

Probability Theory

Problem Estimating

k-Nearest Neighbou

Fairy tale data set:

ur	x_1	x_2	x_3	y
t	WearsBlack	SavesPrincess	HorseColour	GoodOrEvil
	No	Yes	Black	Good
	Yes	No	Black	Evil
<u>ur</u>	No	No	White	Good
	Yes	Yes	Brown	Good

Classifying a new instance:

 $P(Y = \text{Good})P\left(X = \begin{pmatrix} \text{No} \\ \text{Yes} \\ \text{White} \end{pmatrix} \mid Y = \text{Good} \right) = \frac{3}{4} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}$ $> P(Y = \text{Evil})P\left(X = \begin{pmatrix} \text{No} \\ \text{Yes} \\ \text{White} \end{pmatrix} \mid Y = \text{Evil} \right) = \frac{1}{4} \cdot 0 \cdot 0 \cdot 0$

Inductive Bias

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of *k*-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Incorrect independence assumption:

The assumption that components of \mathbf{x} are conditionally independent given the class label is very strong. In fact it is often known to be false.

Inductive Bias

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Incorrect independence assumption:

- The assumption that components of \mathbf{x} are conditionally independent given the class label is very strong. In fact it is often known to be false.
- For example, naive Bayes is often used to classify e-mail as spam or not spam. Each component of x represents a word in the text of an e-mail.
- If one of the words 'OEM' and 'software' occurs in a spam message, then the other one is more likely to occur as well.
- Hence the components of \mathbf{x} are clearly not independent.

Inductive Bias

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of *k*-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Incorrect independence assumption:

- The assumption that components of \mathbf{x} are conditionally independent given the class label is very strong. In fact it is often known to be false.
- For example, naive Bayes is often used to classify e-mail as spam or not spam. Each component of x represents a word in the text of an e-mail.
- If one of the words 'OEM' and 'software' occurs in a spam message, then the other one is more likely to occur as well.
- Hence the components of x are clearly not independent.

But it works anyway:

According to [Domingos and Pazzani, 1996]:

- Even if $P(y | \mathbf{x})$ is not estimated correctly;
- Often $\arg \max_y P(y \mid \mathbf{x})$ is still correct.

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of k-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption

Organisational Matters

- k-Nearest Neighbour
 - Distance is the Essential Ingredient
 - Inductive Bias
 - Extensions of k-Nearest Neighbour
- Probability Theory
- Naive Bayes
 - Problem Estimating Probabilities
 - Solution: Independence Assumption

References

Organisational Matters

k-Nearest Neighbour

Distance is the Essential Ingredient

Inductive Bias

Extensions of *k*-Nearest Neighbour

Probability Theory

Naive Bayes

Problem Estimating Probabilities

Solution: Independence Assumption A.N. Shiryaev, "Probability", Second Edition, 1996
P. Domingos and M. Pazzani, "Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier", Proceedings of the 13th International Conference on Machine Learning, 1996

T.M. Mitchell, "Machine Learning", McGraw-Hill, 1997