
Lecture Notes on Stochastic Optimization

Tim van Erven

October 24, 2017

1 Optimization with Gradient Descent

In the course we have seen many cases where we want to find parameters β =
(β1, . . . , βp) that minimize some function F (β):

β∗ = arg minβ F (β).

For instance,

F (β) =
1

N

N∑
i=1

(Yi −X>i β)2 (least squares)

F (β) =
1

N

N∑
i=1

(Yi −X>i β)2 + λ

p∑
j=2

β2
j (ridge regression)

F (β) =
1

N

N∑
i=1

(Yi −X>i β)2 + λ

p∑
j=2

|βj | (lasso)

F (β) =
1

N

N∑
i=1

log(1 + e−YiX
>
i β) (logistic regression)

N.B. I am dividing here by N , which I did not do in the lectures, but if we
adjust λ appropriately then this makes no difference to the optimal parameters
β∗. These functions all have in common that they are convex. See Figure 1.
Mathematically, this means that, for any two parameter vectors β0 and β1, the
line between F (β0) and F (β1) lies above the function F . That is,

F
(
(1− λ)β0 + λβ1

)
≤ (1− λ)F (β0) + λF (β1) for all λ ∈ [0, 1].

Practically, convexity means that we can find the minimum of F by starting at
some parameters β1 and then making small improvements to the parameters
that decrease the value of F (β) until we reach the minimum. The most well-
known method that does this is gradient descent, which makes improvements of
the form

βt+1 = βt − ηt∇F (βt) (gradient descent)

where βt are the current parameters after t steps of the algorithm, βt+1 are the
new parameters, and ∇F (βt) is the gradient at βt. The gradient is the vector
of partial derivatives

∇F (β) =


∂
∂β1

F (β)
...

∂
∂βp

F (β)

 ,

1

−3 −2 −1 0 1 2 3 4

0
2

4
6

8

(a) Convex function

−3 −2 −1 0 1 2 3 4

−
4

−
2

0
2

4

(b) Non-convex function

(c) Convex function of two parame-
ters

(d) Another convex function of two
parameters (this function is actually
linear)

Figure 1: Examples of convex and non-convex functions

and ∇F (βt) is always pointing in the direction in which F would increase the
most if we moved away from βt. Because we want to decrease F instead of
increasing it, we take steps in the direction −∇F (βt), which is the direction
in which F decreases the most if we move away from βt. Finally, the number
ηt > 0 in the definition of gradient descent is called the step size, because it
controls the size of our steps. The best way to choose the step sizes ηt depends
on properties of the function F , but common choices are ηt = C, ηt = C/

√
t and

ηt = C/t, where C is some constant. For example, if the function F is not only
convex, but also γ-smooth, then choosing ηt = 1

γ guarantees that the difference

between F (βt) and F (β∗) (where β∗ are the optimal parameters) decreases at
a rate that is in the order of O(1/t):

F (βt)− F (β∗) ≤ 2γ‖β1 − β∗‖2

t− 1
,

so the more steps we take (that is, the larger t), the closer we get to the optimum
parameters [1]. (In case you are wondering, γ-smoothness means that the second
derivative of F in any direction is at most γ.)

2 Stochastic Optimization

Every step of gradient descent requires computing the gradient of F . If F
consists of a sum of many functions:

F (β) =
1

N

N∑
i=1

fi(β), (1)

2

then this means we need to compute the gradient of each of these functions in
every step of gradient descent, because

∇F (βt) =
1

N

N∑
i=1

∇fi(βt),

which takes a lot of computation time when N is large.
Looking at the examples at the start of the previous section, we see that least

squares and logistic regression are of the form (1), with fi(β) = (Yi−X>i β)2 and

fi(β) = log(1 + e−YiX
>
i β), respectively. But it turns out that ridge regression

and the lasso also fall into this category, if we take fi(β) = (Yi − X>i β)2 +
λ pen(β), where pen(β) is the ridge or lasso penalty. To see this, note that

1

N

N∑
i=1

(
(Yi −X>i β)2 + λ pen(β)

)
=

1

N

N∑
i=1

(
(Yi −X>i β)2

)
+ λ pen(β).

When we need to minimize functions F of the form (1), stochastic optimiza-
tion often provides savings in computation time. When combined with gradient
descent, it works as follows:

Stochastic Gradient Descent The idea is that whenever we need to com-
pute the gradient ∇F (βt) in gradient descent, we cheat a little bit and only
compute an approximation. In every step t of the algorithm, we do this by ran-
domly choosing one of the functions fi and then using only the gradient ∇fi(βt)
instead of ∇F (βt). The resulting algorithm is called stochastic gradient descent,
and each update step of the algorithm works as follows:

Choose it randomly from {1, 2, . . . , N}
βt+1 = βt − ηt∇fit(βt)

We see that each update step now only requires computing the gradient for a
single function fi instead of computing N gradients for each of the functions
f1, . . . , fN . We can therefore take N steps of stochastic gradient descent in the
same computation time that we would need to take 1 step of ordinary gradient
descent. Of course, we may now be concerned that ∇fit(βt) may be a poor
substitute for ∇F (βt), but it turns out that it is a reasonable estimate, because
on average it has the right value:

Eit [∇fit(βt)] =

N∑
i=1

1

N
∇fit(βt) = ∇F (βt).

In statistical terms, ∇fit(βt) is an unbiased estimator for ∇F (βt).

References

[1] S. Bubeck. Convex optimization: Algorithms and complexity. Foundations
and Trends in Machine Learning, 8(3–4):231–358, 2015.

3

	Optimization with Gradient Descent
	Stochastic Optimization

